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Abstract

We propose a novel approach for detecting personal data in struc-
tured datasets, leveraging GPT-4o, a state-of-the-art Large Lan-
guage Model. A key innovation of our method is the incorporation
of contextual information: in addition to a feature’s name and val-
ues, we utilize information from other feature names within the
dataset as well as the dataset description. We compare our ap-
proach to alternative methods, including Microsoft Presidio and
CASSED, evaluating them on multiple datasets: DeSSI, a large syn-
thetic dataset, datasets we collected from Kaggle and OpenML as
well as MIMIC-Demo-Ext, a real-world dataset containing patient
information from critical care units.

Our findings reveal that detection performance varies signifi-
cantly depending on the dataset used for evaluation. CASSED excels
on DeSSI, the dataset on which it was trained. Performance on the
medical dataset MIMIC-Demo-Ext is comparable across all models,
with our GPT-40-based approach clearly outperforming the oth-
ers. Notably, personal data detection in the Kaggle and OpenML
datasets appears to benefit from contextual information. This is
evidenced by the poor performance of CASSED and Presidio (both
of which do not utilize the context of the dataset) compared to the
strong results of our GPT-40-based approach.

We conclude that further progress in this field would greatly
benefit from the availability of more real-world datasets containing
personal information.
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1 Introduction

Recent years have seen a strong increase in the amount of data
created and stored in a digital form. In many cases also personal
data is collected. However, this vast accumulation of data and its
digital availability brings with it substantial challenges, particularly
concerning compliance with data protection regulations [2, 5, 10].

At the heart of these regulations is the General Data Protec-
tion Regulation (GDPR) of the European Union, which is widely
considered the gold standard for data privacy [5, 10]. The GDPR
not only aims to protect individuals’ fundamental rights regarding
the processing of their data but also imposes strict penalties on
organizations that fail to comply, with potential fines reaching up
to 4% of global annual turnover [21]. The significance of the GDPR
has led to its adoption as a foundational reference for personal data
protection worldwide, influencing similar regulations in various
countries [12, 24].

To comply with these regulations and for ethical reasons, or-
ganizations need to implement effective measures to detect and
manage personal data. In light of the often large volume of data,
this requires powerful automated detection tools [9, 22].

Problem Statement. Detecting personal data within structured
datasets poses unique challenges. The format of the document being
analyzed significantly influences the effectiveness of personal data
detection efforts. The GDPR highlights the importance of context
in defining personal data, indicating that an individual can often be
identified indirectly through a combination of seemingly innocu-
ous information. For example, while an individual’s age alone may
not be identifying, when combined with other attributes, such as
their organization or job title, it can lead to their identification[10].
Existing solutions tend not to integrate information across several
columns and thereby neglect important information [19]. For in-
stance, a "Device Number" column in an IT asset database typically
represents a device’s serial number and may not initially appear to
contain personal information. However, if the database is linked
to an employee database that tracks assigned hardware, the device
number could serve as an identifier for an employee, making it
personal data. Without proper contextual comprehension, these so-
lutions misclassify data and result in compliance issues and privacy
violations.
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Objective of the Study. We aim to develop an effective system for
detecting personal data in structured datasets by integrating con-
textual information into the detection process. We propose a novel
approach that employs large language models (LLMs), specifically
the GPT-40 model, to improve detection accuracy. By comparing
this model with established benchmarks, including Microsoft Pre-
sidio and CASSED models, we seek to highlight the advantages of
context-aware detection methods.

Furthermore, we target an evaluation of these models on real-
istic real-world data. Previously used synthetic datasets bear the
risk of not reflecting the real challenges properly and, hence, lead-
ing to wrong conclusions. For this reason, we collected a total of
33 datasets from Kaggle and OpenML and also included MIMIC-
Demo-Ext, a real-world dataset containing patient information from
critical care units, in our evaluation.

Contributions of this Paper. To summarize, the contributions of
this paper are as follows:

(1) Novel Methodology for Personal Data Detection: We
introduce a novel approach that leverages the capabilities
of Large Language Models (LLMs), specifically GPT-4o, to
enhance the detection of personal data in structured datasets.
By integrating contextual information into the detection pro-
cess, we aim to improve accuracy and adaptability compared
to traditional methods.

(2) Comprehensive Benchmarking: We compare GPT-40
with established models like Microsoft Presidio and CASSED.
The evaluation utilizes the DeSSI, Kaggle, OpenML, and
MIMIC-Demo-Ext datasets to evaluate the detection of per-
sonal data. Comparing the performance across diverse datasets
allows a better assessment of the strengths and limitations
of each detection system.

(3) Real-world vs. Synthetic Data: A key element of our eval-
uation is the comparison of results obtained on synthetic vs.
real-world data. With this, we aim to determine if synthetic
data can serve as a reliable benchmark.

2 Related Work

The field of personal data detection has gained increasing attention,
especially in light of evolving privacy regulations. However, before
moving forward, it is essential to define what we mean by personal
data.

2.1 Definition of Personal Data

The concept of personal data includes several related terms. The
most commonly used are:

(1) Personal Data: According to Article 4 of the GDPR, personal
data is defined as “any information relating to an identi-
fied or identifiable natural person” [8]. Examples include
information about a person’s physical properties, contact
details or identification numbers. Personal data can be di-
vided into two categories: directly identifiable information
and indirectly identifiable information.

(2) Personally Identifiable Information (PII): PII is defined as
any information that can directly identify a person without
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the need for additional information, such as a bank account
number or an email address[17].

(3) Person-related Data: Person-related data cannot directly
identify a person but relates to a natural person and may
lead to identification when combined with other data [10].
Information such as gender or age does not directly identify
a person but can be used in combination with other data for
identification.

When we refer to personal data, we use the definition of the GDPR
(1) as a supergroup of PII and person-related data. We specifically
used this definition when we labeled data as personal or non-
personal in the datasets we collected. Some authors also use the
term Sensitive Data synonymously with personal data (e.g. [19])
even though the GDPR defines it as a subgroup of personal data[5].

2.2 Detection of Personal Data from
Unstructured Data

Most approaches focus on the detection of personal data in unstruc-
tured data (e.g. text) [17, 27, 29].

Initial approaches for personal data detection in unstructured
data primarily utilized traditional named entity recognition (NER)
techniques, which were adapted from broader natural language
processing (NLP) applications, including sensitive information de-
tection and PII detection [25, 29]. Very recent approaches also use
Large Language Models (LLMs) for this task [29].

2.3 Detection of Personal Data from Structured
Data

Research on personal data detection from structured data is much
more scarce. One prominent example is Microsoft Presidio[22]
which was designed for general entity recognition tasks yet applied
to PII detection. It is based on a set of recognizers for predefined
classes [23] (compare Tab:8). Presidio employs a combination of
approaches including NER, regular expressions, rule-based logic,
checksums, and machine learning to identify sensitive data. Presidio
also offers options for connecting to external PII detection models
and supports customization in PII identification and anonymization.
While effective in many scenarios, these approaches can be less
effective in handling context-dependent variations of personal data
[20].

More recent models use advanced machine learning methods
to integrate information from a column’s name with the values of
different cells in this column. Examples are Sherlock [13], which
employs deep neural networks, and SIMON [1], which relies on a
character-level neural network and an LSTM architecture.

The advent of language models like BERT [4] allowed for more
robust approaches to personal data detection. BERT transforms
sequences of text into vector embeddings which are able to capture
the semantics of the text much better than previous approaches.
As a consequence, variations in a feature’s name or its values have
a much less detrimental effect. The CASSED model is based on
such an approach [19]. More precisely, it employs DistilBERT [26],
a lightweight variant of BERT, to convert a feature’s name and
some exemplar feature values into an embedding. For doing so, the
text sequence of the feature’s name and the values of the feature
are concatenated into a string, separated by delimiters, allowing
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DistilBERT to treat the column as a quasi-natural sentence. The
maximum token length of 512 elements of DistilBERT limited the
amount of information that could be used. For this reason, CASSED
is not able to include additional information from the neighboring
columns. In parallel to this DistilBERT path, a rule-based path is
used to identify personal data. Both paths are then combined via
sigmoid functions to convert the scores for all 20 different classes of
personal and non-personal data categories CASSED can recognize
into probabilities (compare Tab: 7 for a list of the classes). These
probabilities are then used to make a decision. CASSED was trained
using DeSSI [3], a large dataset annotated with the aforementioned
20 classes.

3 Methodology

In the following, we will first introduce the different datasets we
use to evaluate the different approaches. Next, we will describe
our GPT-40-based approach in detail. We will then explain which
models we used as benchmarks for our own approach and how
they needed to be adapted to be suitable for this comparison. After
that, we will also describe the performance metrics we used to
benchmark the models.

Our implementation is open-source and publicly available on
GitHub!.

3.1 Dataset Selection

Our evaluation relies on a large range of datasets containing per-
sonal information. The first and by far largest dataset we use is the
DeSSI dataset (Dataset for Structured Sensitive Information) [3, 19],
created to simulate real-world relational database challenges. The
authors give no exact definition what they consider sensitive in-
formation, yet, they reference the GDPR in their work and the list
of classes they use (compare Tab: 7) aligns with the definition of
personal data of the GDPR [19]. From this, we conclude that they
also use the definition of the GDPR as we do. DeSSI consists of over
31,000 database columns with 100 rows each, derived from open-
source datasets (e.g., Kaggle), synthetic data generated via Python
libraries like Faker, and pseudo-anonymized real-world data[6, 19].
Columns were intentionally designed with randomized or mislead-
ing headers to reflect real-world inconsistencies and avoid reliance
on misleading column headers. The dataset was randomly split in
ratios of 60/20/20 percent among training/validation/test datasets.
For training the CASSED model, we use the training and validation
part, and for the evaluation of CASSED, Presidio, and our GPT-40-
based approach, we only use the 6272 columns of the test set. For
our experiments, we mapped the original 20 semantic classes into
two categories: personal and non-personal data (compare Tab: 7 in
the appendix). Additionally, we extracted 13 datasets from Kaggle
(finance/e-commerce) [16] and 20 from OpenML [7, 28] (Table 9).
Finally, we also include MIMIC-Demo-Ext, a curated subset of the
MIMIC-III Demo [11, 14, 15]. MIMIC-Demo-Ext contains informa-
tion from the MIMIC-III Clinical Database Demo?, which is made
available under the Open Database License (ODbL)3. MIMIC-III

The implementation can be accessed at: https://github.com/agishaalbert/personal-
data-detection-LLMs/

Zhttps://physionet.org/content/mimiciii-demo/1.4/
3https://physionet.org/content/mimiciii-demo/view-license/1.4/
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demo comprises deidentified medical records of over 40,000 ICU pa-
tients at Beth Israel Deaconess Medical Center (2001-2012). From
these, we extracted and curated a small subset of 100 patients’
records to focus on the detection of personal data while preserving
the relational nature of the MIMIC-IIT demo. The dataset ensures
that the columns remain contextually linked through identifiers
such as patient IDs or admission IDs. Additionally, we ensured
that each column contains at least some non-empty values across
its records, avoiding fully empty columns. This guarantees that
every column contributes meaningful information for personal
data detection without compromising the integrity or usability of
the relational database schema. The Kaggle, OpenML, and MIMIC-
Demo-Ext datasets were not annotated for the detection of personal
data. For this reason, one of the authors performed a manual bi-
nary labeling (personal/non-personal) based on the definition of
personal data of the GDPR and the data context.

Table 1: Statistics of the datasets used

Dataset Personal Non-Personal Total
DeSSI (test set) 3413 2859 6272
Kaggle 155 91 246
OpenML 82 176 258
MIMIC-Demo-Ext 43 120 163

As can be seen from Tab. 1 the number of features in the different
datasets and the ratio of personal to non-personal features varies a
lot from dataset to dataset. DeSSI is very balanced wrt. to personal
vs. non-personal features and contains almost ten times as many
features as the other datasets taken together. MIMIC-Demo-Ext
on the other hand is the smallest dataset and dominated by non-
personal features. However, MIMIC-Demo-Ext is the only actual
real-world dataset. DeSSI is mainly synthetic and for some of the
datasets on Kaggle and OpenML it is not clear if they are truly
authentic datasets or only inspired by real data.

3.2 Experimental Procedure GPT-40

For our GPT-40-based approach, we integrate information on the
column in question with information from all other columns in
the dataset (see Sec. A). This is in contrast to e.g. CASSED which
evaluates each column independently from all other columns. Input
prompts for our approach are structured to include the following
information :

o Title of the dataset

o Description of the dataset

e Column Name (feature to be classified)

e Names of other features of the dataset

e Ten most frequent values found in the column

This structured input allows GPT-40 to focus on the immediate
context relevant to the column being analyzed, thereby reducing
potential overload from extraneous data. The output of each column
is a binary classification indicating whether it contains personal
data (True) or not (False).

3.2.1 CRSRF Framework. The CRSRF (Capacity and Role, State-
ment, Reason, Format)[29], detailed in appendix B, is designed to
enhance the effectiveness of prompt-based classification tasks in
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machine learning models, particularly in identifying semantic rela-
tionships within datasets. This framework emphasizes the necessity
of clarifying the model’s role in the classification process, articu-
lating specific objectives, and outlining expected output formats.
Using this structured approach, the model can better navigate and
understand complex data inputs, leading to improved classification
accuracy.

3.22  Prompting Structure. The design of the prompt is crucial, as
it significantly impacts the performance of the model. The prompt
is structured into three main components:

(1) Initial Prompt: This component introduces the task to GPT
according to the CRSRF framework. It emphasizes the im-
portance of the task and outlines how the results should be
outputted.

(2) Example Prompt: This prompt consists of an example ques-
tion and answer, providing a single instance of the task (one-
shot learning) to demonstrate the expected output format.

(3) Data Prompt: This component contains the specific column
to be classified, along with meta-information regarding the
dataset, such as the title and description.

The complete structure of the prompt provided to the GPT API
is illustrated as follows:

conversation = [

{"role": "system", "content": initial_prompt},
{"role": "user", "content": example_prompt},
{"role": "assistant", "content": example_answer},
{"role": "user", "content": data_prompt}

]

In this structure, roles are defined to guide the model regarding
the following entities:

e The "system" provides task instructions to the model.

o The "user" reflects input data that necessitates classification
by the GPT model.

e The "assistant" projects the anticipated model response.

An example of a final prompt is presented in Sec. A.

For each part of the prompt, a random seed is set; however, it is
essential to note that this does not guarantee reproducibility of the
responses of the GPT-40 model.

3.3 Benchmark Model Selection

We selected Presidio [22] and CASSED [19] as benchmark mod-
els against which we compare our GPT-40-based approach. We
selected CASSED because it is a recent model that outperformed
Sherlock and SIMON in a previous comparison [19]. We also se-
lected Presidio as a baseline due to its frequent use and in general
good performance. We did not include Sherlock and SIMON as they
showed significantly weaker performance than the CASSED model
in the aforementioned comparison.

To be usable in our experiments, we needed to make some ad-
justments to the models.

3.3.1 Adjustments Presidio. Presidio contains different modules.
The Presidio Analyzer module can detect PII information in textual
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documents, while Presidio Structured is designed to recognize PII
data in tabular datasets. We tested both modules using different
approaches. For every dataset, the Presidio Analyzer outperformed
the Presidio Structured module. Consequently, we only present
results for the Presidio Analyzer module.

For the Presidio Analyzer module, tabular datasets must be con-
verted into textual data. We tested two strategies:

o Columnwise, where all values from a single column, along
with the column name, are provided to the model.

e Rowwise, where all values from a single row are transmitted
together.

Presidio then predicts all detectable entities for each column or row.
Next, the predicted entities are mapped to personal or non-personal
(see Sec. C.2).

To optimize the prediction accuracy for the Presidio Analyzer
module, two thresholds are implemented. The first threshold defines
the minimum number of times an entity must be detected in a
column to be considered valid. The second threshold is a minimum
for the confidence score of the entity, which indicates how confident
Presidio is that the entity is detected correctly. As some entities
that Presidio can detect are not necessarily related to a person,
the predictions have to be mapped to personal and non-personal.
For each dataset, the best presidio analyzer approach was used for
comparing Presidio’s performance against the other models in the
experiments.

3.3.2  Adjustments to CASSED. The CASSED model was used with
the settings described in the original work [19]. Predictions are
made for each column of a dataset using a column-wise approach.
The input to the model is constructed for each column by combining
the column header with multiple cell values from the same column,
separated by delimiters(’’, ’))[19].

CASSED originally is able to detect 20 different classes. To adapt
CASSED from multiclass to binary classification, we modified and
retrained the model by mapping the original multiclass labels to
binary labels using the label mapping described in (Sec. C.1). We
trained CASSED using the train and validation split of the DeSSI
dataset. Afterward, the model was evaluated on the test set of
DeSSI and all other datasets (which served only as test data). The
Adam optimizer was used for fine-tuning with a learning rate of
5x 107>, The model was trained with a mini-batch size of 16 for
20 epochs, following the procedure outlined in [19]. In the original
work of the CASSED model, the output of the DistilBERT model
was combined with some rule-based heuristics, regular expressions,
and lookup tables [19]. The publicly available CASSED model pub-
lished on Github [18] does not contain these enhancements, so
only the Transformer model was used in this work. In the results
of CASSED’s original paper[19], the public model is only slightly
worse than the enhanced version. Consequently, the use of the
publicly available model instead of the best implementation should
not result in significant performance loss.

3.4 Evaluation Metrics

In assessing the models’ detection capabilities, we utilize the fol-
lowing metrics:
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e Macro F1 Score: it assigns equal weight to all classes re-
gardless of frequency by computing the F1 score for each
class separately before computing the unweighted mean. As
it assigns equal weight to all classes, including the less fre-
quent ones, it is particularly useful when assessing model
performance on class-imbalanced datasets.

e Micro F1 Score: it calculates the F1 score globally by adding
up the total number of true positives, false positives, and false
negatives across all the classes before precision and recall
calculation. It uses one score to measure the model’s perfor-
mance over all instances combined. Micro F1 is dominated
by majority class performance in class-imbalanced data and
therefore doesn’t work well for evaluating performance in
minority classes.

e Balanced Accuracy: It computes the average of recall for
all classes, ensuring that performance is fairly assessed even
in cases of class imbalance. This metric provides a better
estimate when certain categories occur less frequently in the
test set.

The models are evaluated using macro, micro F1 score, and Bal-
anced Accuracy-valuable metrics for assessing a model’s perfor-
mance in multiclass classification problems, allowing a balanced
view of precision and recall across classes.

4 Experimental Results

In this section, we compare the performance of Presidio, CASSED,
and our GPT-40-based approach on the aforementioned data sets.

4.1 F1 Scores and Balanced Accuracy

Our main target is the binary distinction between personal and
non-personal data. To achieve this, we adapted CASSED to such a
binary classification task (see Sec. 3.3). In the case of Presidio, we
performed a multiclass classification and then mapped the detected
classes to either personal or non-personal categories (see Sec. C.2).
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Accuracy all reaching 0.996. Microsoft Presidio followed with a
Macro F1 of 0.794, while our GPT-40-based approach performed
slightly lower at 0.766.

Across the Kaggle and OpenML datasets, GPT-40 achieved the
highest performance, with a Macro F1 score of 0.902 on Kaggle and
0.964 on OpenML. The performance of CASSED dropped drasti-
cally for these two datasets to Macro F1 scores of 0.349 and 0.501,
respectively. Similarly, Presidio also only achieved Macro F1 scores
0f 0.293 and 0.684 on these datasets. The differences in performance
were less pronounced for the MIMIC-Demo-Ext dataset. Here again,
our GPT-40-based approach leads with a Macro F1 score of 0.865.
CASSED and Presidio achieve 0.724 and 0.662, respectively. Hence,
CASSED shows clearly superior performance on DeSSI, a dataset
on which it was developed. For all other datasets, our GPT-4o-
based approach is better. Presidio shows comparable performance
to CASSED except for the evaluation on DeSSI. This is also visible
when averaging scores over all datasets. Here, our GPT-40-based
approach shows with an averaged Macro F1 score of 0.865 clearly
superior performance to CASSED (0.643) and Presidio (0.608). The
other measures (Micro F1 and Balanced Accuracy) show a similar
behavior.

4.2 Analysis of False Negatives and False
Positives

CASSED DESSI CASSED Kaggle

< N-Pers -pPAEER 8 < N-Pers - 14
=] =]
i3] S
< Pers - 20 REJEK] < Pers — 18
Qz‘% Qeﬁ% Qe;‘% Qe;‘%
< <
Predicted Predicted

CASSED OpenML CASSED MIMIC-Demo-Ext

Table 2: Performance comparison of Microsoft Presidio, 755 N-pers ' 9 755 N-pers _ 13
CASSED, and GPT-4o0 across different datasets. g Pers- 72 10 g Pers- 20 23
Dataset Metric Presidio CASSED GPT-40 ' ‘ ' '
& © & ©
Macro F1 0.793 0.996 0.766 ¥ ]° ¢ ]
DeSSI Micro F ~ ~
e icro F1 0.794 0.996 0.772 Predicted Predicted
Balanced Acc. 0.791 0.996 0.764
Macro F1 0.293 0.349 0.902
. Figure 1: Confusion matrices for CASSED model perfor-
Kaggle Micro F1 0.297 0.386 0.907
mance across datasets: DESSI, Kaggle, OpenML, and MIMIC-
Balanced Acc. 0.299 0.481 0.910 . X K
Demo-Ext. Each matrix shows the classification results for
Macro F1 0.684 0.501 0.964 ersonal (P) and non-personal (N-pers) data categories
OpenML Micro F1 0.733 068  0.969 P P P gories.
Balanced Acc. 0.518 0.535 0.968
Macro F1 0.662 0.724 0.829 A model’s ability to prevent false negatives (FN) has high prac-
MIMIC-Demo-Ext  Micro F1 0.730 0.798 0.859 tical relevance, as failing to detect personal data can pose serious
Balanced Acc. 0.667 0.713 0.852 GDPR compliance risks. When looking at the confusion matrices
Macro F1 0.608 0.643 0.865 for all three approaches and all 4 datasets (Fig. 1, 2, and 3) one can
Average Micro F1 0.639 0.717 0.877 observe that CASSED performs near perfect on DeSSI yet shows
Balanced Acc. 0.569 0.681 0.874 frequent false negatives (personal-related data not detected as such)

As can be seen from Tab. 2, on the DeSSI dataset, CASSED per-
formed nearly perfectly, with Macro F1, Micro F1, and Balanced

for the Kaggle and OpenML datasets. This is also visible for the
MIMIC-Demo-Ext dataset but less pronounced. The performance of
our GPT-40-based approach is more balanced for all datasets other
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o N-Pers -ileEES 921 < N-Pers — 7
=] =]
3] 3]
< Pers- 510 < Pers- 16 [k}
& &
< <
Predicted Predicted

GPT-40 OpenML GPT-40 MIMIC-Demo-Ext

o N-Pers — 5 < N-Pers 16
=1 =1
° ©
< Pers- 3 79 < Pers- 7 36
& & & o
& &

Predicted Predicted

Figure 2: Confusion matrices for our GPT-40-based model
performance across four datasets: DESSI, Kaggle, OpenML,
and MIMIC-Demo-Ext. Each matrix shows the classification
results for personal (P) and non-personal (N-pers) data cate-
gories.

Presidio DESSI Presidio Kaggle

s N-Pers -pAWEY 785 < N-Pers- 28
=] =}
3] k3]
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Presidio OpenML Presidio MIMIC-Demo-Ext
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Figure 3: Confusion matrices for Presidio model performance
across datasets: DESSI, Kaggle, OpenML, and MIMIC-Demo-
Ext. Each matrix shows the classification results for personal
(P) and non-personal (N-pers) data categories.

than DeSSI. For DeSSI it shows a notable tendency for false positives
(non-person-related detected as person-related). The performance
of Presidio is the most balanced yet overall inferior.

Hence, the risk of false negatives is notably smaller for our GPT-
40-based approach compared to CASSED and Presidio for the real-
world datasets (Kaggle, OpenML, MIMIC-Demo-Ext) but clearly
inferior to CASSED on the synthetic data (DeSSI). Nevertheless, in
light of the costs potentially involved, the FN rates on the real-world
data are currently still too high for practical applications.
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Table 3: Examples in DeSSI Data

Features oib.1 accountid.3 kzwwskxzgjgc

77 563634 T  Jasper g-h@hotmail.com

Values 77 140837 T  vocativ s.draksicO@ribaric.com
77887027 T kinzo berlin  g-dominguez@wu.net
Context  Synthetic data Synthetic data Synthetic data
True Label Personal Personal Personal
CASSED  Personal Personal Personal
GPT-40  Non-personal Non-personal Non-personal
Table 4: Examples in Kaggle Data
Features Cabin Ticket Reason Absence
C103 A/5 21171 26
Values C123 STON/0O2,3101 0
E46 374910 19
Context  Titanic data Titanic data Absenteeism
True Label Personal Personal Personal

CASSED
GPT-40

Non-personal Non-personal Non-personal

Personal Personal Personal

Table 5: Examples in OpenML Data

Features Email Address Location

Customer City

alexandra@example.org Rebeccachester sao bernardo

Values holland@example.com  sao paolo niteroi
elizabeth31@example.net Port Deborah  campinas
Context  Customer data Customer data Customer data

True Label Personal
CASSED
GPT-40

Personal Personal

Non-personal Non-personal Non-personal

Personal Personal Personal

Table 6: Examples in MIMIC-Demo-Ext Data

Features marital_status discharge_location last_careunit

MARRIED HOME MICU
Values DIVORCED SNF CCU
SEPARATED DEAD/EXPIRED TSICU
Context  Medical data Medical data Medical data
True Label Personal Personal Personal
CASSED  Non-personal ~ Non-personal Non-personal
GPT-40 Personal Personal Personal

4.3 Analysis of Selected Examples

As we could see above, the performance of the different models
varied significantly depending on the dataset. We will now have a
closer look at detailed results for individual features in the different
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datasets. As Presidio showed inferior performance we limit this
analysis to CASSED and our GPT-40-based approach.

Tab. 3 shows some examples from the DeSSI dataset which
CASSED successfully recognized as personal and our GPT-40-based
approach failed. CASSED seems to have learned the corresponding
relations quite well and is in the case of the last feature able to
detect the e-mail addresses. Our GPT-40-based approach seems to
be confused by the rather uninformative feature name. CASSED
seems also to know (via BERT or have learned from other exam-
ples) that "OIB" is a permanent national identification number of
every Croatian citizen and correctly identifies it as personal. Again,
our GPT-40-based approach struggles here, presumably because
the names of the other features in the dataset - contextual cues
our approach integrates - do not give enough hints or because of
insufficient representation of Croatia in the training data of GPT-4o.
The situation for "accountid" is similar.

When looking at the examples for the Kaggle data in Tab. 4 we
see that our GPT-40-based approach was able to use the context
given by the dataset description and the names of the other features
to correctly identify the personal information. Here CASSED strug-
gled as some context is required to infer that "Cabin", "Ticket" and
"Reason Absence" might reveal personal information. Most likely
for similar reasons CASSED also misclassified domain-specific at-
tributes such as "Workclass" and "Income".

The examples where CASSED failed in the OpenML data in Tab. 5
are a bit surprising. "Email Address" and "Customer City" should
be identifiable as personal also without context. Possibly a lack
of variation in the synthetically created training data of CASSED
prevents it from detecting e-mail addresses containing "example"
in the domain. It is also a possibility that these types of e-mail ad-
dresses were explicitly labeled as non-personal in the training data.
CASSED also missed crucial identifiers like "User ID". Conversely, it
produced false positives, incorrectly flagging anonymized "Address"
and "Postcode" fields as sensitive, and mislabeling generic terms
like "Referee” and "Species" as personal data. These errors high-
light CASSED’s problems in dealing with domain-specific scenarios
where contextual interpretation is crucial for accurate classifica-
tion. Yet our GPT-40-based approach did also not perform perfectly
on the OpenML data. In some instances, it misclassified fields like
"userid" and "customer_id.13" as non-personal, likely due to their
generic naming conventions.

The mistakes of CASSED we see on the MIMIC-Demo-Ext dataset
(compare Tab. 6) might be due to its special nature: medical data. It
is possible that medical data was not represented sufficiently in the
training data of CASSED. Nevertheless, it is surprising that it did
not recognize a feature as "marital_status” correctly. This hints at
other reasons than the unfamiliarity with medical data for its poor
performance.

5 Discussion

The results showed a very strong performance of CASSED on the
DeSSI dataset (compare Tab. 2). On the other hand, CASSED’s per-
formance decreased notably when evaluated on the MIMIC-Demo-
Ext dataset, and it performed rather poorly on Kaggle and OpenML.
Based on our current analysis it is difficult to determine the rea-
sons for this. One possible explanation is overfitting of CASSED
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on DeSSI, the data set that was developed in conjunction with
CASSED.

This could be due to DeSSI representing only a narrow sub-
set of the true variation in personal data or a consequence of the
train/dev/test split. Notably, the authors do not specify whether pre-
cautions were taken to ensure that features from the same dataset
were not distributed across different splits. If this was not accounted
for, the system might have leveraged information from the train-
ing set when processing the test set, as these features cannot be
assumed to be entirely independent. It could also stem from the syn-
thetic generation of features, where the same underlying patterns
may have been used for features appearing in both the training
and test splits. Another possible explanation is that the individual
features in the dataset are largely independent, making them highly
compatible with CASSED’s core assumptions. Based on our more
detailed analysis of some examples in Tab: 4-6 we suspect at least
some overfitting of CASSED on DeSSI. Otherwise, it is hard to ex-
plain why it would have difficulties recognizing "Email Address",
"Customer City" and "marital_status” correctly. Another possibility
could be a misalignment in the annotations we used and those used
for DeSSI. However, when looking at their classes and our mapping
(compare Tab: 7) it is unlikely that this explains the results.

The poor performance of CASSED and Presidio on the Kaggle
and OpenML datasets could also be explained by the contextual
information required to deal with these datasets. If features like
"Cabin", "Ticket", and "Location” contain personal information, it
depends, in general, on context. This helps explain the superior
performance of our GPT-40-based approach on these datasets. An-
other reason might be that these well-known and widely distributed
datasets were contained in GPT-40’s training data. This might give
GPT-40 an advantage even though they are, to our knowledge, not
available with annotations for the detection of personal data (this
annotation is our own). Finally, on the MIMIC-Demo-Ext dataset,
the differences in performance between the different models were
less striking. Here our GPT-40-based approach obtained inferior re-
sults to those on Kaggle and OpenML. Nevertheless, it quite clearly
outperformed CASSED and Presidio. One reason for this could be
that medical data was not well represented in DeSSI, CASSED’s
training data. This would be rather unfortunate as personal data
detection is a very important topic in the medical domain. GPT-4o,
with its vast amount of training data, might hence be better able to
cope with this. Another reason might be the benefits of contextual
information for this dataset. From the examples we analyzed in
Tab: 6 it is difficult to make conclusions about this.

Additionally, the datasets we investigated can also be split across
another dimension: real-world (Kaggle, OpenML, MIMIC-Demo-
Ext) vs. synthetic (DeSSI). Here, the conclusion might be that the
DeSSI dataset does not represent the real world sufficiently well,
which leads to the very clear drop in the performance of CASSED
when applied to real-world data. However, when looking at the
results, it has to be kept in mind that DeSSI alone contains roughly
10 times as many features as the other datasets taken together. More
thorough conclusions will require the analysis of more and larger
real-world datasets. However, the requirements for data protection
complicate the access to such datasets.
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5.1 Limitations and Future Research

We demonstrated that LLMs, particularly when incorporating con-
text, can enhance the detection of personal data, particularly in
real-world datasets. However, current performance is still insuffi-
cient to minimize the risk of personal data disclosure and ensure
full GDPR compliance. As main avenues for further improvement,
we see:

e Dataset Diversity: The study has highlighted some potential
limitations of current methods resulting from the use of
synthetic data. It seems likely that DeSSI, the only large-scale
dataset for personal data detection, is not diverse enough
to cover real-world variations. Additional large and diverse
real-world datasets are needed to make further progress.

o Influence of context: We could give some hints that the use of
contextual information in our GPT-40-based model was ben-
eficial yet a more detailed analysis is needed to better assess
what role context plays and how it can be most effectively
used.

e Privacy Constraints: Since GPT-40 operates as an online ser-
vice, its reliance on cloud-based processing raises significant
privacy concerns. Transmitting personal data to external
servers poses compliance risks under data protection regula-
tions. Future research needs to explore secure on-premise
solutions to overcome this.

e Computational Demand: GPT-4o is a very powerful yet also
very computationally demanding model requiring orders of
magnitude more computational resources than Presidio or
the BERT-based CASSED. Hence, in addition to the need to
find on-premise solutions also much smaller LLMs need to
be investigated.

o Hybrid models: It can be expected that integrating ideas from
all three models (rule-based approaches, classical machine
learning, and LLMs) will help to further improve results.

o False Negatives: Concerning the high priority of not acci-
dentally revealing personal information, adaptations to the
models need to be made to better control false negatives.

6 Conclusion

Despite significant performance differences across datasets, we
conclude that our GPT-40-based approach is the most effective
model for detecting personal data in structured datasets. It demon-
strated strong performance on synthetic data in DeSSI, outper-
formed CASSED and Presidio on medical data in MIMIC-Demo-Ext,
and clearly surpassed both approaches on Kaggle and OpenML—likely
due to its ability to leverage contextual information.

However, this high performance comes at the cost of substantial
computational demands. Future research should explore whether
smaller, locally running LLMs can achieve comparable results with
lower resource requirements.

Additionally, further investigation is needed to determine whether
CASSED’s exceptional performance on DeSSI reflects genuine model
capabilities or is merely an artifact of overfitting to this artificial
dataset. A more comprehensive analysis, along with additional
real-world datasets, will be crucial for a robust evaluation of these
models.

Agisha N. et al.

Overall, we have demonstrated that high-performance personal
data detection in structured datasets is achievable. However, further
advancements are necessary to minimize the risk of unintended
data exposure and ensure these methods meet acceptable privacy
standards.

Acknowledgments

This work was conducted in the context of the project KI-Allianz
BW: Datenplattform funded by Ministerium fiir Wirtschaft, Arbeit
und Tourismus Baden-Wiirttemberg.

References

[1] Paul Azunre, Craig Corcoran, Numa Dhamani, Jeffrey Gleason, Garrett Honke,
David Sullivan, Rebecca Ruppel, Sandeep Verma, and Jonathon Morgan. 2019.
Semantic Classification of Tabular Datasets via Character-Level Convolutional
Neural Networks. doi:10.48550/arXiv.1901.08456

[2] California Attorney General. [n.d.]. California Consumer Privacy Act (CCPA).
https://oag.ca.gov/privacy/ccpa Accessed: January 26, 2025.

[3] Sensitive Detection. 2022. DeSSI Dataset for Structured Sensitive Informa-
tion. https://www.kaggle.com/datasets/sensitivedetection/dessi- dataset-for-
structured- sensitive-information. Accessed: December 14, 2024.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association
for Computational Linguistics, Minneapolis, Minnesota, 4171-4186. doi:10.18653/
v1/N19-1423

[5] European Union. [n.d.]. General Data Protection Regulation (GDPR). https:
//gdpr.eu/ Accessed: January 26, 2025.

[6] Faker Community. [n.d.]. Welcome to Faker’s Documentation! https://faker.
readthedocs.io/ Accessed: January 26, 2025.

[7] Matthias Feurer, Jan N. van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik,
Sahithya Ravi, Andreas Miiller, Joaquin Vanschoren, and Frank Hutter. 2021.
OpenML-Python: an extensible Python API for OpenML. Journal of Machine
Learning Research 22, 100 (2021), 1-5. http://jmlr.org/papers/v22/19-920.html

[8] Micheéle Finck and Frank Pallas. 2020. They who must not be identi-
fied—distinguishing personal from non-personal data under the GDPR. Interna-
tional Data Privacy Law 10, 1 (03 2020), 11-36. doi:10.1093/idpl/ipz026

[9] Somchart Fugkeaw, Ananya Chaturasrivilai, Pitchayapa Tasungnoen, and Weer-

apat Techaudomthaworn. 2021. AP2I: Adaptive PII Scanning and Consent Dis-

covery System. In 2021 13th International Conference on Knowledge and Smart

Technology (KST) (2021). 231-236. doi:10.1109/KST51265.2021.9415803

GDPR EU. [n.d.]. GDPR personal data — what information does this cover?

https://www.gdpreu.org/the-regulation/key-concepts/personal-data/ Accessed:

January 26, 2025.

Ary L. Goldberger, Luis A. N. Amaral, Leon Glass, Jeffrey M. Hausdorff, Pla-

men Ch. Ivanov, Roger G. Mark, Joseph E. Mietus, George B. Moody, Chung-Kang

Peng, and H. Eugene Stanley. 2000. PhysioBank, PhysioToolkit, and PhysioNet.

Circulation 101, 23 (2000), e215-€220. doi:10.1161/01.CIR.101.23.€215

Graham Greenleaf. 2023. Global Data Privacy Laws 2023: 162 National Laws

and 20 Bills. Privacy Laws and Business International Report 181 (2023), 1, 2-4.

doi:10.2139/ss51rn.4426146 UNSW Law Research Paper No. 23-48.

Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen, Arvind Satya-

narayan, Tim Kraska, Cagatay Demiralp, and César Hidalgo. 2019. Sherlock: A

Deep Learning Approach to Semantic Data Type Detection. In Proceedings of

the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining (Anchorage, AK, USA) (KDD ’19). ACM, New York, NY, USA, 1500-1508.

doi:10.1145/3292500.3330993

Alistair Johnson, Tom Pollard, and Roger Mark. 2019. MIMIC-III Clinical Database

Demo (version 1.4). PhysioNet. doi:10.13026/C2HM2Q

[15] Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng,

Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and

Roger G Mark. 2016. MIMIC-III, a freely accessible critical care database. Scientific

data 3, 1 (2016), 1-9. doi:10.13026/C2HM2Q

Kaggle Inc. [n.d.]. How to use Kaggle. https://www.kaggle.com/docs/api Ac-

cessed: January 26, 2025.

Poornima Kulkarni and N. K. Cauvery. 2021. Personally Identifiable Infor-

mation (PII) Detection in the Unstructured Large Text Corpus using Nat-

ural Language Processing and Unsupervised Learning Technique. Inter-

national Journal of Advanced Computer Science and Applications Vol. 12, 9

(2021). https://www.proquest.com/scholarly-journals/personally-identifiable-

information-pii-detection/docview/2655113578/se-2

[10

[11

=
&N

(13

=
&

[16

(17


https://doi.org/10.48550/arXiv.1901.08456
https://oag.ca.gov/privacy/ccpa
https://www.kaggle.com/datasets/sensitivedetection/dessi-dataset-for-structured-sensitive-information
https://www.kaggle.com/datasets/sensitivedetection/dessi-dataset-for-structured-sensitive-information
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://gdpr.eu/
https://gdpr.eu/
https://faker.readthedocs.io/
https://faker.readthedocs.io/
http://jmlr.org/papers/v22/19-920.html
https://doi.org/10.1093/idpl/ipz026
https://doi.org/10.1109/KST51265.2021.9415803
https://www.gdpreu.org/the-regulation/key-concepts/personal-data/
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.2139/ssrn.4426146
https://doi.org/10.1145/3292500.3330993
https://doi.org/10.13026/C2HM2Q
https://doi.org/10.13026/C2HM2Q
https://www.kaggle.com/docs/api
https://www.proquest.com/scholarly-journals/personally-identifiable-information-pii-detection/docview/2655113578/se-2
https://www.proquest.com/scholarly-journals/personally-identifiable-information-pii-detection/docview/2655113578/se-2

Detection of Personal Data in Structured Datasets Using a Large Language Model LLM-DPM °2025, June 22, 2025, Berlin, Germany

[18] Vjeko Kuzina. [n.d.]. CASSED github implementation. https://github.com/ A Prompt to GPT for Datasets with Context

VKuzina/CASSED Accessed: January 26, 2025.
[19] Vjeko Kuzina, Ana-Marija Petric, Marko Barisi¢, and Alan Jovié. 2023. CASSED: Prompt to GPT for Datasets with Context
Context-based Approach for Structured Sensitive Data Detection. Expert Systems
with Applications 223 (2023), 119924. doi:10.1016/j.eswa.2023.119924

[20] Han Liu, Alexander Gegov, and Frederic Stahl. 2014. Categorization and Con- Initial Prompt: As a classifier of person-related data
struction of Rule Based Systems. In Engineering Applications of Neural Networks in tabular datasets, your task is to analyze the provided

(Cham, 2014), Valeri Mladenov, Chrisina Jayne, and Lazaros Iliadis (Eds.). Springer .. . .
International Publishing, 183-194. doi:10.1007/978-3-319-11071-4_18 columns (each containing up to ten distinct values) and

[21] GDPR Local. [n.d.]. GDPR Fines: Understanding Percentages and Penalties. determine whether they contain information that origi-
https://gdprlocal.com/gdpr-fines-understanding- percentages-and-penalties/ Ac- nates from or relates to a person, even if it is not directly
cessed: March 23, 2025. identifiablelDetecti lated inf i hel

Microsoft. 2023. Presidio: Open-source tool for personal data detection. https: ICCHNNADICEOCIECHTIPYNEISQIEIC ATECHMIDEMATIONEICIS
//github.com/microsoft/presidio Accessed: January 26, 2025. ensure compliance with data protection regulations and

[22

[23] M_icrosoft c.ontril_)utorsA_ [n d.]. PII entitie_s_ supported by Presidio.  https:// safeguards individuals’ privacy and security. Output your
microsoft.github.io/presidio/supported_entities/ Accessed: January 26, 2025. . .. . & S g

[24] Chris Moschovitis. 2021. Privacy, regulations, and cybersecurity: The essential results in a dlctlonary format with a boolean lndlcatlng if
business guide. John Wiley & Sons. 416 pages. doi:10.1002/9781119660156 the column contains person-related data or not.

[25] Ji-sung Park, Gun-woo Kim, and Dong-ho Lee. 2020. Sensitive Data Identification

in Structured Data through GenNER Model based on Text Generation and NER. Example Prompt:

In Proceedings of the 2020 International Conference on Computing, Networks and You can use the following example as a guideline: Classify
Internet of Things (Sanya, China, 2020) (CNIOT "20). ACM, New York, NY, USA, the following column with careful consideration of the
36-40. doi:10.1145/3398329.3398335 %o

[26] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2020. Dis- dataset descrlptlon:
tiIBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. doi:10. Dataset:
48550/arXiv.1910.01108 g o8 6

[27] Md Hasan Shahriar, Anne V. D. M. Kayem, David Reich, and Christoph Meinel. Title: _Te?t Da‘tase,t .
2024. Identifying Personal Identifiable Information (PII) in Unstructured Text: A Descrlptlon: This dataset was used for a linear r egres-
Comparative Study on Transformers. In Database and Expert Systems Applications, sion.’

Christine Strauss, Toshiyuki Amagasa, Giuseppe Manco, Gabriele Kotsis, A. Min

B k] ) 3 )
Tjoa, and Ismail Khalil (Eds.). Springer Nature Switzerland, 174-181. doi:10.1007/ Features: [’ first_name_en_10", ’last_name_en_10’,

978-3-031-68312-1_14 ’email_en_10’, ’phone_number’, ’address_en_10’,

[28] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. 2014. OpenML: ‘city_en_10’, ’country_en_10’, "date’,
networked science in machine learning. ACM SIGKDD Explorations Newsletter , y
15, 2 (June 2014), 49-60. doi:10.1145/2641190.2641198 target’]

[29] Jianliang Yang, Xiya Zhang, Kai Liang, and Yuenan Liu. 2023. Exploring the Column of the dataset to classify:
AppliAcation of Largg Laxllguage ‘Models in Detecting anq Protectiilg Personally ‘first_name_en_10’: [’Tom’, ’Walter’, ’Mia’,
Identifiable Information in Archival Data: A Comprehensive Study™. In 2023 IEEE s , R ) s X , ., , s
International Conference on Big Data (BigData) (2023). 2116-2123. doi:10.1109/ Lena’, John’, Jack’, Felice’, Anna’,
BigData59044.2023.10386949 ’Lukas’ , Will’]

Does this column, in the context of the dataset, contain
information relating to a natural person?

Example Answer: {’first_name_en_10’: true}
Data Prompt: Classify the following column with careful
consideration of the dataset description.

Dataset: Title: Absenteeism at Work

Description: Context - The database was created with
records of absenteeism at work from July 2007 to July 2010
at a courier company in Brazil.

Features: Index([’ID’, ’Reason for absence’,
"Month of absence’, ’Day of the week’, ’Seasons’,
’Transportation expense’, ’Distance from
Residence to Work’, ’Service time’, ’Age’, ’Work
load Average/day’, ’Hit target’, ’Disciplinary
failure’, ’Education’, ’Son’, ’Social drinker’,
’Social smoker’, ’Pet’, ’Weight’, ’Height’,
’Body mass index’, ’Absenteeism time in hours’],
dtype=’object’)

Column of the dataset to classify: *ID’: [3, 20, 28,
11, 15, 34, 10, 33, 14, 36]

Does this column, in the context of the dataset, contain
information relating to a natural person?

Note: The description of the dataset has been shortened for
better readability.
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B CRSRF Framework for Constructing Prompts

The CRSRF framework provides a structured approach for designing
prompts that effectively guide large language models (LLMs) in
detecting and safeguarding personal information within archives.
It consists of the following key components:

e Capacity and Role: This element establishes the LLM’s
task by defining its function as a detector and protector of
personal information within text-based archives. The prompt
may begin with: “As a comprehensive identifier of personal
information within text-based archives...”

e Statement: This defines the specific objective, explicitly
stating the types of personal information the LLM should
identify. A sample statement could be: “Search for and flag
any occurrences of personal names, unique identification codes
such as identity card numbers or passport numbers, telephone
numbers, home addresses, and mentions of family members...”

e Reason: This section provides justification for the task, em-
phasizing the significance of protecting personal data. A
well-structured reason may be: “These details, if exposed, can
compromise an individual’s privacy and security. It is crucial
to identify them to ensure the confidentiality and integrity of
the archived documents.”

e Format: This specifies the preferred output format for the
extracted information, ensuring structured and clear presen-
tation. Given the nature of the data, a list format is recom-
mended: “Present the identified personal information in a list
format, with categories such as ‘Name,” Identification Code,’
“Telephone Number, ‘Address,” and ‘Family Members’ as keys.”

C Mapping of Classes
C.1 Mapping for CASSED

For the DeSSI labels, columns were labeled as personal if at least
one entity belonged to the personal-related category (Table 7)

Table 7: Classification of entities in the DeSSI dataset

Personal Non-Personal
Phone number Other data
Address Organization
Person GPE

Email SWIFT/BIC
NIN Geolocation
Date

Passport

CCN

ID Card

Sexuality

Gender

Nationality

Race
Religion
IBAN

Agisha N. et al.

C.2 Mapping for Presidio

The classification follows the logic that direct identifiers and sen-
sitive attributes related to individuals fall under personal, while
business-related and general references are non-personal unless
they reveal individual identity. This table provides an overview of
the PII entities that Presidio can detect using its predefined recog-
nizers.

Table 8: Classification of MS Presidio Recognizers

Personal Non-Personal
CREDIT_CARD DATE_TIME
CRYPTO IP_ADDRESS
EMAIL_ADDRESS LOCATION
IBAN_CODE URL

NRP (Passport) AU_ABN
PERSON AU_ACN
PHONE_NUMBER

SSN

US_BANK_NUMBER
US_DRIVER_LICENSE
US_ITIN
US_PASSPORT
US_SSN

D Kaggle and OpenML Datasets

To evaluate the performance of our methods on diverse and real-
world data, we utilized datasets from two prominent platforms:
Kaggle and OpenML.

Table 9: List of Kaggle and OpenML Datasets used.

Kaggle Datasets

Absenteeism at Work, Adult Census Income, Agriculture,

Bank Marketing Campaigns, Diabetes, Graduate Admission 2,
Indian Companies Registration Data, Indian Liver Patient Records,
London House Price, Phishing Email,

Pixar Movies, Student Performance, Titanic

OpenML Datasets

Amazon Prime Fiction, APL_20_24, CSM, DATASETBANK,
company quality and valuation finance, FitBit HeartRate,
HousingPrices, mango detection australia, Oilst Customers Dataset,
TVS Loan Default, Avocado Prices (Augmented), echoMonths,
fishcatch, forest fires, FOREX chfjpy minute Close,

iris, Marvel Movies Dataset, nyc taxi green dec 2016,

vowel, wine quality
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