
Text2Cypher: Data Pruning using Hard Example Selection
Makbule Gulcin Ozsoy
makbule.ozsoy@neo4j.com

Neo4j
London, UK

ABSTRACT
Database query languages such as SQL for relational databases
and Cypher for graph databases have been widely adopted. Re-
cent advancements in large language models (LLMs) enable nat-
ural language interactions with databases through models like
Text2SQL and Text2Cypher. Fine-tuning these models typically
requires large, diverse datasets containing non-trivial examples.
However, as dataset size increases, the cost of fine-tuning also
rises. This makes smaller, high-quality datasets essential for re-
ducing costs for the same or better performance. In this paper,
we propose five hard-example selection techniques for pruning
the Text2Cypher dataset, aiming to preserve or improve perfor-
mance while reducing resource usage. Our results show that these
hard-example selection approaches can halve training time and
costs with minimal impact on performance, and demonstrates that
hard-example selection provides a cost-effective solution.

CCS CONCEPTS
• Information systems→Query languages for non-relational
engines; Graph-based database models; Data cleaning; • Com-
putingmethodologies→Machine translation; Supervised learn-
ing.

KEYWORDS
Hard-Example Selection, Data Selection, Text2Cypher, LLMs
ACM Reference Format:
Makbule Gulcin Ozsoy. 2018. Text2Cypher: Data Pruning using Hard Exam-
ple Selection. In Proceedings of Make sure to enter the correct conference title
from your rights confirmation email (Conference acronym ’XX). ACM, New
York, NY, USA, 6 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
In today’s world, data and knowledge are stored, managed, and
queried through databases, which are accessed using query lan-
guages such as SQL (for relational databases) or Cypher (for graph
databases). Recent advancements in large language models (LLMs)
have made it possible to interact with databases using natural lan-
guage, allowing models like Text2SQL and Text2Cypher to translate
natural language questions into database queries. A common ap-
proach for generating these queries is to fine-tune foundational

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

Figure 1: Hard-Example Selection for Dataset Pruning

models using question-query datasets. Effective fine-tuning of these
models requires large, diverse datasets with non-trivial examples.

With increased use of synthetic datasets, it is now possible to au-
tomatically generate larger datasets. However, these datasets often
suffer from quality and redundancy issues. Recent research suggests
that small, high-quality datasets can outperform larger ones when
fine-tuning LLMs [22, 24]. Additionally, the cost of fine-tuning
LLMs increases as the dataset size grows. One way to address these
challenges is to prune or select a subset of the data. This process
should be automated to ensure that the resulting dataset (i) main-
tains high performance and (ii) minimizes costs, achieving greater
efficiency [8]. Figure 1 shows a hard-example selection procedure.
Initially, we start with a larger dataset containing simple, medium,
and hard Cypher queries used for fine-tuning a Text2Cypher model.
After applying hard-example selection, the dataset is reduced in
size and predominantly retains medium and hard queries.

In this paper, we apply five hard-example selection approaches
to prune the Text2Cypher dataset: three approaches for selecting
challenging instances from a larger training dataset to enhance
model performance and two approaches that combine the proposed
hard-example selection methods. We evaluate their impact on a
Text2Cypher dataset, analyzing training time (in terms of training
steps) and Cypher generation performance. Our main contributions
are:

• We propose hard-example selection techniques specifically
for the Text2Cypher task. Three approaches leverage prior
analysis results and heuristics to identify challenging (hard)

https://orcid.org/0000-0001-6013-1668
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ozsoy et al.

examples and prune the training dataset, while two addi-
tional approaches combine these methods to improve per-
formance.

• We analyze their impact on the Text2Cypher task on training
time (measured in steps), loss values, and Cypher generation
performance.

• Our results show that hard-example selection approaches
reduce resource usage — both in elapsed time and total cost—
by more than half while minimally affecting Cypher genera-
tion performance. Although there is room for improvement
in matching the performance of training on the full dataset,
hard-example selection presents a cost-effective solution.

The structure of the paper is as follows: Section 2 reviews related
work on data subset selection and pruning, particularly for fine-
tuning large language models. Section 3 details the hard-example
selection approaches applied to the Text2Cypher task. Section 4
outlines our experimental setup and presents the evaluation results.
Finally, Section 5 provides the conclusion.

2 RELATEDWORK
Several approaches for data selection or pruning have been pro-
posed in the literature [1, 17], ranging from the use of baseline LLM
models to decide which instances to select or create embeddings
[3–5, 9], to methods that rely on instance-level scores based on
system indicators like diversity or difficulty. For example, Maha-
rana et al. [10] use graph-based techniques to reduce redundancy
by iteratively selecting diverse and challenging instances. Lin et al.
[8] utilize influence and effort scores to prioritize influential and
difficult samples for fine-tuning. Zhang et al. [22] identify diverse,
difficult, and dependable data iteratively. In each iteration, they
evaluate the distinctiveness, difficulty (through uncertainty-based
prediction), and dependability (using an external LLM) of instances,
then apply a weighted function to select a subset. Tan et al. [15]
propose InfoMax, selecting samples based on informativeness and
overlap between pairwise samples.

Other approaches include training a model on a small subset,
then using it to prune the data. For example, Li et al. [7] fine-tune
a model on a randomly sampled subset of data, then use the fine-
tuned model to calculate Instruction Following Difficulty (IFD)
scores for each instance. Instances with greater difficulty, based on
IFD score, are selected for final fine-tuning. Xu et al. [19] focuses
on differentiating informative hard samples from misleading ones
in model training. In their HardPT framework, they utilize rein-
forcement learning and adaptive contrastive learning techniques.
Azeemi et al. [2] employ cross-entropy scores to select harder in-
stances. In their experiments they observe that selecting more dif-
ficult instances results in improved model performance. Xia et al.
[18] introduce the LESS algorithm, an optimizer-aware approach
for efficient data selection. It uses a warm-up training phase to
generate low-dimensional gradient features, which are stored and
later used by models for training. Finally, Yang et al. [20] focus
on diversity-aware selection using sparse autoencoders and either
greedy-sampling approach (SAE-GreedSelect) or similarity-based
sampling (SAE-SimScale) approach.

Although data selection or pruning are well-studied in machine
learning, their application to natural language to query language

tasks, such as Text2SQL and Text2Cypher, remains largely unex-
plored. SE-HCL [23] applies curriculum learning to the Text2SQL
task by training the model progressively, starting with easy in-
stances and gradually moving to more difficult ones. This approach
involves iterative steps that begin with simplifying the data, grad-
ually increasing its complexity, and evaluating the difficulty of
individual instances. Some Text2SQL datasets, such as Spider [21]
and IndDB [11], provide difficulty labels based on SQL constructs
like GROUP BY clauses and nested subqueries, where more com-
plex constructs indicate higher difficulty. However, these difficulty
annotations are primarily used for analyzing evaluation outputs
rather than for data selection. In this work, we explore data pruning
for the Text2Cypher task by focusing on hard-example selection
based on instance difficulty.

3 HARD-EXAMPLE SELECTION FOR
TEXT2CYPHER

We introduce five methods for selecting hard examples. Three of
them focus on finding more challenging instances, while the other
two combine these approaches to improve selection.

3.1 Selecting Challenging Instances
In our previous work [12], we have executed a comprehensive
analysis of model performance on the Neo4j Text2Cypher (2024)
dataset [13]. This analysis explored evaluation results frommultiple
perspectives, including key metrics (such as Google-Bleu and Exact
Match), assigned complexity levels, and breakdowns by data source,
database type, and fine-tuned model. The statistical analyses (e.g.,
averages, standard deviations) revealed consistent patterns of model
struggle, particularly on examples from specific databases and data
sources. Further error analysis highlighted that these challenges
were often due to inconsistencies in ground-truth Cypher queries
(such as varying use of WHERE clauses or aggregation methods),
limitations of existing evaluation metrics, and underlying model
weaknesses. These findings directly motivated our hard-example
selection strategies, which aim to construct a more informative
and targeted training subset by focusing on the most challenging
instances.

In this section, we describe three approaches for selecting chal-
lenging instances from a larger training dataset to enhance model
performance.

• Complexity-Based Hard-Example Selection: Guided by
our analysis [12], we identified data sources and databases
where fine-tunedmodels struggled most. Based on this analy-
sis: (i) The chosen databases are three demonstration databases
of Neo4j 1 2, namely "recommendations, companies, neoflix",
and (ii) The selected data-sources are: "functional_cypher",
"synthetic_gemini", and "text2cypher2023_train".
For the selection of these instances, we used a logical "OR" to
include instances from either the selected databases or data
sources. While this results in a diverse set of challenging in-
stances, we observe an imbalance with many instances com-
ing from a single data source. To address this, we performed
additional sampling, limiting each group to a maximum of

1Neo4j Text2Cypher Crowdsourcing App: https://text2cypher.vercel.app/
2Neo4j Browser Demo: https://demo.neo4jlabs.com:7473/browser/

https://text2cypher.vercel.app/
https://demo.neo4jlabs.com:7473/browser/


Text2Cypher: Data Pruning using Hard Example Selection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

4,000 instances (the average group size). This resulted in a
total of 16,173 instances, less than the half of the original
training dataset, of approximately 40K instances.

• Length-Based Hard-Example Selection: This heuristic
approach assumes that longer ground-truth Cypher queries
are more challenging for a language model to generate ow-
ing to their increased complexity. Longer queries often in-
volve multiple clauses, making them harder to replicate ac-
curately. Therefore, this approach selects instances based on
the length of the Cypher query. To ensure consistency with
other selection methods, we maintained a final dataset size
of 16,173 instances.

• Cypher-Specific Hard-Example Selection: This heuristic
method focuses on the presence of Cypher-specific terms
(e.g., MATCH, WHERE, RETURN), under the assumption
that queries containing more such terms are more com-
plex. Unlike the length-based approach, which prioritizes
the length of queries, this method selects instances based on
the count of Cypher terms, i.e., which are likely to be more
complex by containing multiple clauses. To ensure fairness
with other hard-instance selection methods, we restricted
this dataset to 16,173 instances.

3.2 Combining Selection Methods
We combined the proposed hard-example selection approaches as
follows:

• Complexity-Based & Length-Based Hard-Example Se-
lection: After selecting hard examples using the Complexity-
Based approach, we took an additional step to further re-
fine the selection process. Specifically, we sorted the chosen
instances in descending order based on the length of the
Cypher queries. This step follows the methodology of the
Length-Based approach, which assumes that longer queries
tend to be more complex and, therefore, more challenging
for the model to generate. By prioritizing longer queries,
we made sure that the final set of hard examples was both
challenging and diverse in terms of complexity.

• Complexity-Based & Cypher-Specific Hard-Example
Selection: Similar to the previous combined approach, after
selecting hard examples using the Complexity-Based ap-
proach, we ranked them by the number of Cypher-specific
terms in descending order, aligning with the Cypher-Specific
approach. This method emphasizes instances with more
Cypher-specific terms, as these tend to be more complex and
involve multiple clauses. The final subset, therefore, includes
challenging instances and have a diverse set of complexities.

3.3 Baseline Approaches
We used the following baseline approaches:

• Original Data: This baseline uses the training data with-
out any modifications which provides a reference point for
performance comparisons.

• Randomly-Sampled: In this approach, we randomly sam-
pled instances from the original data. To ensure fairness
with the Complexity-Based approach, we aimed to create a
balanced dataset across data source groups. We first sampled

each group (based on the data-source field) to a size of 2,755,
representing the 75th percentile of data source group sizes.
We then refined the sample to 16,173 instances to match the
size used in the hard-instance selection methods.

4 EXPERIMENTAL SETUP AND RESULTS
4.1 Experimental Setup and Evaluation Metrics
For our experiments, we used the publicly available Text2Cypher
dataset [13], which contains 44,387 instances—39,554 for training
and 4,833 for testing. This dataset is a cleaned and combined ver-
sion of multiple data sources, most of which were synthetically
generated.

We employed two evaluation procedures to measure model per-
formance: (i) Translation-Based (Lexical) Evaluation: This method
compares generated Cypher queries with ground-truth queries at
the textual level. (ii) Execution-Based Evaluation: This method exe-
cutes both the generated and ground-truth Cypher queries on the
target database and compares their outputs, sorted lexicographi-
cally. This approach requires an active target database, where about
50% of the dataset has such references. As a result, it evaluates only
a subset of the data. To compute these evaluation metrics, we used
the Hugging Face Evaluate library [6]. We report the Google-Bleu
and Exact Match scores as the primary evaluation metrics.

We fine-tuned a baseline model, ’unsloth/Meta-Llama-3.1-8B-
Instruct-bnb-4bit’, using various training datasets prepared accord-
ing to the proposed hard-example selection methods. During eval-
uation, we used the test set and fine-tuned models to generate
Cypher queries based on input natural language questions and cor-
responding database schemas. After generating the Cypher queries,
we applied a post-processing step to remove unwanted text, such as
the ’cypher:’ prefix. Details of the fine-tuning setup and parameters
are provided in Appendix B.

4.2 Evaluation Results
We analyzed the impact of (i) using a subset of the full dataset, as-
sessing both training efficiency and model accuracy, and (ii) apply-
ing different hard-example selection approaches on performance.

4.2.1 Impact of Training Data Reduction. The original 40K-instance
training dataset was reduced to 16,173 instances through random-
sampling or hard-example selection. As shown in Figure 2, training
the full dataset required around 2.5K steps (batch size 16), while
the subset datasets needed only 1K steps. This reduction signifi-
cantly cut fine-tuning time and costs. Using subset data achieved
comparable or better training loss at 1K steps. However, over the
full 2.5K steps, the original full dataset achieved a better final loss:
0.0387 versus 0.0569 for random sampling. Translation-based eval-
uation, which is based on token prediction accuracy, aligns closely
with the loss function. The original dataset achieved a Google-Bleu
score of 0.75 and an Exact Match score of 0.36, whereas the ran-
dom sampling approach scored lower at 0.69 and 0.20, respectively.
Execution-based evaluation showed smaller drops, with the full
dataset scoring 0.25 (Google-Bleu) and 0.27 (Exact Match) versus
0.21 and 0.25 for the randomly sampled dataset. In summary, us-
ing subsets cuts training time and costs by over half but reduces



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ozsoy et al.

(a) Training loss: Original vs. Randomly-Sampled data

(b) Translation-based - Google-Bleu score (c) Translation-based - Exact-Match score

(d) Execution-based - Google-Bleu score (e) Execution-based - Exact-Match score

Figure 2: Original vs. Randomly-Sampled data

performance. We next explore whether hard-example selection can
retain efficiency while improving outcomes.

4.2.2 Impact of Hard-Example Selection. When fine-tuning the
baseline model with datasets prepared using random sampling or
hard-example selection approaches, training times remain similar
since the dataset sizes were kept equal, as shown in Figure 3. All
methods achieve comparable loss values, ranging between 0.05 and
0.06. However, closer inspection reveals a ranking from highest
(worst) to lowest (best) loss: Length-Based → Random-Sampled →
Cypher-Specific → Complexity-Based. In translation-based eval-
uation, the Complexity-Based approach performs best, achieving
0.71 Google-Bleu and 0.25 Exact Match, bringing it closer to the
performance of the original dataset. Interestingly, execution-based
evaluation, which is run on a subset of data that has access to ac-
tive demonstration databases, follows a different pattern. In this
case, the Cypher-Specific approach yields the best results, with
Google-Bleu and Exact Match scores of 0.23 and 0.26, respectively.

4.2.3 Impact of Combining Approaches on Performance. Combin-
ing the Complexity-Based approach with either the Length-Based
or Cypher-Specific approach did not result in significantly dif-
ferent loss values, as shown in Figure 4. For translation-based
evaluation, all approaches performed similarly, with Google-Bleu
and Exact Match scores around 0.71 and 0.25, respectively. How-
ever, execution-based evaluation revealed some variation: The best

(a) Training loss: Randomly-Sampled and Hard-Example Selection approaches

(b) Translation-based - Google-Bleu score (c) Translation-based - Exact-Match score

(d) Execution-based - Google-Bleu score (e) Execution-based - Exact-Match score

Figure 3: Randomly-Sampled and Hard-Example Selection
approaches

Google-Bleu score (0.24) is achieved by Complexity-Based & Length-
Based approach, and the best Exact Match score (0.25) is achieved
by Complexity-Based & Cypher-Specific approach. These findings
suggest that although combining approaches does not drastically
impact performance, some combinations may offer slight advan-
tages depending on the evaluation method.

4.2.4 Overall. As shown in Table 1, while the full dataset achieves
the highest Google-Bleu and ExactMatch scores for both translation-
and execution-based evaluation, hard-example selection outper-
forms random sampling. It also reduces resource usage—time and
cost—by more than half, as presented in Figure 2, with minimal per-
formance loss. We observe that fine-tuned models may still benefit
from more data or better-tuned hyper-parameters, even with 16K
instances. Future work will explore increasing data diversity and
optimizing hyper-parameters to boost performance. Additionally,
the difference between evaluation methods requires further inves-
tigation. While translation-based evaluation closely aligns with the
loss function, reflecting token prediction accuracy, execution-based
evaluation follows a different pattern. We attribute this behavior to
the fact that execution-based evaluation is run on instances that
have access to demonstration databases, which is around 50% of the
dataset. In the future, we will analyze how different data subsets



Text2Cypher: Data Pruning using Hard Example Selection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(a) Training loss: Combined Hard-Example Selection approaches

(b) Translation-based - Google-Bleu score (c) Translation-based - Exact-Match score

(d) Execution-based - Google-Bleu score (e) Execution-based - Exact-Match score

Figure 4: Combined Hard-Example Selection approaches

Table 1: Performance Comparison: Original (2.5K steps) vs.
Randomly-Sampled (1K steps) vs. Hard-Example Selection
(best scores - 1K steps)

Translation-Based Execution-Based
Google-
Bleu

Exact-
Match

Google-
Bleu

Exact-
Match

Original 0.7585 0.3642 0.2534 0.2740
Randomly-
Sampled

0.6971 0.2048 0.2121 0.2550

Hard Example
Selection (best)

0.7140 0.2599 0.2473 0.2639

impact the model’s ability to generate accurate Cypher queries
during execution-based evaluation.

5 CONCLUSION
With models like Text2SQL and Text2Cypher, which translate nat-
ural language questions into database queries, it is now possible
to interact with databases through natural language. In order to
achieve this, foundational large language models (LLMs) are fine-
tuned using large, diverse datasets containing non-trivial examples.
However, the cost of fine-tuning these models can be significant,
making it desirable to use smaller, high-quality datasets to opti-
mize performance and resource usage. In this work, we explored
hard-example selection for the Text2Cypher task, presenting five
approaches to prune the training dataset. Our analysis demonstrates

that selecting more complex or hard examples reduces resource
usage, in terms of time and cost, by over half, while minimally af-
fecting Cypher generation performance. This finding highlights the
potential for smaller, high-quality datasets to optimize fine-tuning
of large language models (LLMs), especially as a cost-effective strat-
egy.

In this work, we focused on pruning the dataset by selecting the
more complex (hard) instances. However, diversity of the data is
also an important factor. In future research, we plan to explore prun-
ing strategies that take both difficulty and diversity into account.
We also aim to analyze how different subsets of the data affect the
model’s ability to generate accurate Cypher queries and improve
the dataset based on that. While we mostly used heuristic-based
methods in this study, we plan to investigate more advanced tech-
niques in the future, such as different loss functions and training
strategies, to further boost model performance.

REFERENCES
[1] Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert,

Xinyi Wang, Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong,
et al. 2024. A survey on data selection for language models. arXiv preprint
arXiv:2402.16827 (2024).

[2] Abdul Azeemi, Ihsan Qazi, and Agha Raza. 2023. Data pruning for efficient
model pruning in neural machine translation. In Findings of the Association for
Computational Linguistics: EMNLP 2023. 236–246.

[3] Hao Chen, Yiming Zhang, Qi Zhang, Hantao Yang, Xiaomeng Hu, Xuetao Ma,
Yifan Yanggong, and Junbo Zhao. 2023. Maybe only 0.5% data is needed: A
preliminary exploration of low training data instruction tuning. arXiv preprint
arXiv:2305.09246 (2023).

[4] Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav,
Zheng Tang, Vijay Srinivasan, Tianyi Zhou, Heng Huang, and Hongxia Jin.
2024. AlpaGasus: Training a Better Alpaca with Fewer Data. In The Twelfth
International Conference on Learning Representations. https://openreview.net/
forum?id=FdVXgSJhvz

[5] Qianlong Du, Chengqing Zong, and Jiajun Zhang. 2023. Mods: Model-oriented
data selection for instruction tuning. arXiv preprint arXiv:2311.15653 (2023).

[6] HuggingFace. 2024. HuggingFace Evaluate. https://huggingface.co/evaluate-
metric.

[7] Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong
Wang, Tianyi Zhou, and Jing Xiao. 2024. From Quantity to Quality: Boosting
LLM Performance with Self-Guided Data Selection for Instruction Tuning. In
Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers). 7595–7628.

[8] Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang, Fuli Feng, Yinwei Wei, and Tat-
Seng Chua. 2024. Data-efficient Fine-tuning for LLM-based Recommendation.
In Proceedings of the 47th international ACM SIGIR conference on research and
development in information retrieval. 365–374.

[9] Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. 2024. What
Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Se-
lection in Instruction Tuning. In The Twelfth International Conference on Learning
Representations.

[10] Adyasha Maharana, Prateek Yadav, and Mohit Bansal. 2024. D2 Pruning: Message
Passing for Balancing Diversity & Difficulty in Data Pruning. In The Twelfth
International Conference on Learning Representations. https://openreview.net/
forum?id=thbtoAkCe9

[11] Eduardo R Nascimento, Grettel M Garcıa, Lucas Feijó, Wendy Z Victorio, Ye-
nier T Izquierdo, Aiko R de Oliveira, GM Coelho, Melissa Lemos, RL Garcia, LAP
Leme, et al. 2024. Text-to-SQL meets the real-world. In Proceedings of the 26th
international conference on enterprise information systems, Vol. 1. 61–72.

[12] Makbule Gulcin Ozsoy. 2025. Neo4j Text2Cypher: Analyzing Model Struggles
and Dataset Improvements. https://medium.com/p/0b965fd3ebfa.

[13] Makbule Gulcin Ozsoy, LeilaMessallem, Jon Besga, and GianandreaMinneci. 2025.
Text2Cypher: Bridging Natural Language and Graph Databases. In Proceedings of
the Workshop on Generative AI and Knowledge Graphs (GenAIK). 100–108.

[14] RunPod. 2024. RunPod. https://www.runpod.io/.
[15] Haoru Tan, Sitong Wu, Wei Huang, Shizhen Zhao, and Xiaojuan Qi. 2025. Data

Pruning by Information Maximization. In The Thirteenth International Conference
on Learning Representations.

[16] Unsloth. 2024. Unsloth AI - Open Source Fine-Tuning for LLMs. https://unsloth.
ai/.

https://openreview.net/forum?id=FdVXgSJhvz
https://openreview.net/forum?id=FdVXgSJhvz
https://huggingface.co/evaluate-metric
https://huggingface.co/evaluate-metric
https://openreview.net/forum?id=thbtoAkCe9
https://openreview.net/forum?id=thbtoAkCe9
https://medium.com/p/0b965fd3ebfa
https://www.runpod.io/
https://unsloth.ai/
https://unsloth.ai/


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Ozsoy et al.

[17] Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun Zhang, and Dianhui Chu. 2024. A
survey on data selection for llm instruction tuning. arXiv preprint arXiv:2402.05123
(2024).

[18] Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi
Chen. 2024. LESS: Selecting Influential Data for Targeted Instruction Tuning. In
International Conference on Machine Learning (ICML).

[19] Yuanjian Xu, Qi An, Jiahuan Zhang, Peng Li, and Zaiqing Nie. 2023. Hard Sample
Aware Prompt-Tuning. In Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). 12356–12369.

[20] Xianjun Yang, Shaoliang Nie, Lijuan Liu, Suchin Gururangan, Ujjwal Karn,
Rui Hou, Madian Khabsa, and Yuning Mao. 2025. Diversity-driven data se-
lection for language model tuning through sparse autoencoder. arXiv preprint
arXiv:2502.14050 (2025).

[21] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James
Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A Large-Scale
Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and
Text-to-SQL Task. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. 3911–3921.

[22] Jia Zhang, Chen-Xi Zhang, Yao Liu, Yi-Xuan Jin, Xiao-Wen Yang, Bo Zheng, Yi
Liu, and Lan-Zhe Guo. 2025. D3: Diversity, Difficulty, and Dependability-Aware
Data Selection for Sample-Efficient LLM Instruction Tuning. arXiv preprint
arXiv:2503.11441 (2025).

[23] Yiyun Zhang, Sheng’an Zhou, and Gengsheng Huang. 2024. Se-hcl: Schema
enhanced hybrid curriculum learning for multi-turn text-to-sql. IEEE Access 12
(2024), 39902–39912.

[24] Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao,
Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, et al. 2023. Lima: Less is more for
alignment. Advances in Neural Information Processing Systems 36 (2023), 55006–
55021.

A DECLARATION ON GENERATIVE AI USAGE
During the preparation of this work, the author(s) used Chat-GPT in
order to: ’Improve writing style’ and ’Paraphrase and reword’. After
using these tool(s)/service(s), the author(s) reviewed and edited the
content as needed and take(s) full responsibility for the publication’s
content.

B FINE-TUNING PARAMETERS
For fine-tuning, we used a RunPod [14] GPU environment with a
single A40 machine. The fine-tuning process was conducted using

the Unsloth[16] framework. The parameters used for fine-tuning
are presented in Table 2.

Table 2: Fine-tuning Parameters

Model &
Tokenizer
Parameters

𝑚𝑎𝑥_𝑠𝑒𝑞_𝑙𝑒𝑛𝑔𝑡ℎ : 2048,
𝑑𝑡𝑦𝑝𝑒 : 𝑡𝑜𝑟𝑐ℎ.𝑏 𝑓 𝑙𝑜𝑎𝑡16,
𝑙𝑜𝑎𝑑_𝑖𝑛_4𝑏𝑖𝑡 : 𝑇𝑟𝑢𝑒 ,
𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑖𝑜𝑛_𝑠𝑖𝑑𝑒 : ”𝑙𝑒 𝑓 𝑡”,
𝑝𝑎𝑑𝑑𝑖𝑛𝑔_𝑠𝑖𝑑𝑒 : ”𝑙𝑒 𝑓 𝑡”

PEFT
Parameters

𝑟 : 8,
𝑡𝑎𝑟𝑔𝑒𝑡_𝑚𝑜𝑑𝑢𝑙𝑒𝑠 :
[”𝑞_𝑝𝑟𝑜 𝑗”, ”𝑘_𝑝𝑟𝑜 𝑗”, ”𝑣_𝑝𝑟𝑜 𝑗”, ”𝑜_𝑝𝑟𝑜 𝑗”],
𝑙𝑜𝑟𝑎_𝑎𝑙𝑝ℎ𝑎 : 16,
𝑙𝑜𝑟𝑎_𝑑𝑟𝑜𝑝𝑜𝑢𝑡 : 0,
𝑏𝑖𝑎𝑠 : ”𝑛𝑜𝑛𝑒”,
𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 : 3407,
𝑢𝑠𝑒_𝑟𝑠𝑙𝑜𝑟𝑎 : 𝐹𝑎𝑙𝑠𝑒 ,
𝑙𝑜 𝑓 𝑡𝑞_𝑐𝑜𝑛𝑓 𝑖𝑔 : 𝑁𝑜𝑛𝑒

Training
Arguments

𝑝𝑒𝑟_𝑑𝑒𝑣𝑖𝑐𝑒_𝑡𝑟𝑎𝑖𝑛_𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 : 2,
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑒𝑝𝑠 : 4,
𝑤𝑎𝑟𝑚𝑢𝑝_𝑠𝑡𝑒𝑝𝑠 : 5,
𝑛𝑢𝑚_𝑡𝑟𝑎𝑖𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 : 1,
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 : 2𝑒 − 4,
𝑓 𝑝16 : 𝑛𝑜𝑡𝑖𝑠_𝑏𝑓 𝑙𝑜𝑎𝑡16_𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 (),
𝑏𝑓 16 : 𝑖𝑠_𝑏𝑓 𝑙𝑜𝑎𝑡16_𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 (),
𝑜𝑝𝑡𝑖𝑚 : ”𝑎𝑑𝑎𝑚𝑤_8𝑏𝑖𝑡”,
𝑤𝑒𝑖𝑔ℎ𝑡_𝑑𝑒𝑐𝑎𝑦 : 0.01,
𝑙𝑟_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟_𝑡𝑦𝑝𝑒 : ”𝑙𝑖𝑛𝑒𝑎𝑟”,
𝑠𝑒𝑒𝑑 : 3407


	Abstract
	1 Introduction
	2 Related work
	3 Hard-Example Selection for Text2Cypher
	3.1 Selecting Challenging Instances
	3.2 Combining Selection Methods
	3.3 Baseline Approaches

	4 Experimental Setup and Results 
	4.1 Experimental Setup and Evaluation Metrics
	4.2 Evaluation Results

	5 Conclusion
	References
	A Declaration on Generative AI Usage
	B Fine-tuning Parameters

