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Abstract
Traditional Business Process Management struggles with rigidity,
opacity, and scalability in dynamic environments, while emerging
Large Language Models (LLMs) present transformative opportuni-
ties alongside risks. This paper explores four real-world use cases
that demonstrate how LLMs, augmented with trustworthy process
intelligence, redefine process modeling, prediction, and automation.
Grounded in early-stage research projects with industrial part-
ners, the work spans manufacturing, modeling, life-science, and
design processes, addressing domain-specific challenges through
human-AI collaboration. In manufacturing, an LLM-driven frame-
work integrates uncertainty-aware explainable Machine Learning
with interactive dialogues, transforming opaque predictions into au-
ditable workflows. For process modeling, conversational interfaces
democratize BPMN design. Pharmacovigilance agents automate
drug safety monitoring via knowledge-graph-augmented LLMs.
Finally, sustainable textile design employs multi-agent systems to
navigate regulatory and environmental trade-offs. We intend to
examine tensions between transparency and efficiency, general-
ization and specialization, and human agency versus automation.
By mapping these trade-offs, we advocate for context-sensitive
integration — prioritizing domain needs, stakeholder values, and it-
erative human-in-the-loop workflows over universal solutions. This
work provides actionable insights for researchers and practitioners
aiming to operationalize LLMs in critical BPM environments.

CCS Concepts
• Information systems → Extraction, transformation and loading;
Expert systems; Data analytics; Process control systems.
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1 Introduction
The integration of Artificial Intelligence (AI) into Business Process
Management (BPM) has long been recognized as a pathway to op-
erational efficiency [40]. Nevertheless, conventional approaches
— reliant on manual process modeling, rigid statistical methods,
and non-transparent Predictive Process Monitoring (PPM) systems
— struggle to address the dynamism and complexity of modern
industrial workflows [5, 23]. While Process Mining (PM) has en-
abled organizations to visualize and analyze event logs, critical gaps
persist: static models fail to adapt to real-time operational shifts,
domain experts face technical barriers [17, 34], and “black-box” AI
systems weaken trust in high-stakes decision-making [2, 13, 35].
These limitations are particularly evident in industries such as
manufacturing, healthcare, and sustainable design, where urgent
customization, regulatory compliance, and multi-stakeholder col-
laboration demand flexible, transparent solutions [31].

Recent advances in Large Language Models (LLMs) and Explain-
able AI (XAI) signal a transformative shift, framing AI not just
as an automation tool but as a collaborative partner in process
management [36]. LLMs’ ability to interpret natural language, gen-
erate contextual insights, and interact with diverse data sources
aligns with the evolving demands of BPM, where adaptability and
human-AI collaboration are essential [38]. However, realizing this
potential requires addressing practical challenges: How can LLMs
bridge the expertise gap between process modeling experts and
domain specialists? Can AI-driven systems balance automation
with accountability in regulated environments? What technical
innovations are needed to scale these solutions across industries?
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This paper addresses these questions through four real-world
use cases, each stemming from recently funded research initiatives
that explore distinct applications of LLMs in BPM along the BPM
lifecycle [6]. Spanning manufacturing, cross-industry process mod-
eling, drug safety monitoring, and sustainable textile design, these
projects demonstrate how LLMs can support activities along the
entire BPM lifecycle — from discovery and execution to monitoring
and optimization — while tackling domain-specific challenges:

• In LLM-mediated interaction with trustworthy process
predictions, a framework integrating uncertainty-aware
Machine Learning (ML), PM, and multi-agent LLMs trans-
forms opaque predictions into auditable, interactive work-
flows. By grounding explanations in predictions from Manu-
facturing Execution System (MES) event logs and enabling
natural language dialogues, the system empowers users to
validate and adapt AI recommendations in real-time.

• For conversational process modeling, a chat-based inter-
face allows users to model and refine Business Process Model
and Notation (BPMN) models in an interactive manner, de-
mocratizing access to process design and optimization.

• In pharmacovigilance, knowledge graph (KG)-augmented
LLM agents support regulatory experts in drug safety moni-
toring by synthesizing unstructured reports and structured
medical domain knowledge.

• For sustainable textile design, a multi-agent LLM system
navigates regulatory, environmental, and social trade-offs,
empowering designers to align creative choices with circular
economy principles.

Though distinct in scope, these cases share three transforma-
tive themes for BPM. First, they demonstrate human-centric AI,
where LLMs act as bridges between technical systems and non-
expert users, whether through process visualizations or natural
language queries. Second, they emphasize trustworthy automation
through XAI techniques — such as uncertainty quantification (UQ)
and Retrieval-Augmented Generation (RAG) - that anchor LLM
outputs in verifiable data sources. Third, they expose scalability
and performance challenges in integrating LLMs into legacy BPM
infrastructures, from reconciling XML-based process models with
generative AI to reducing errors in KG queries. By presenting these
diverse perspectives, this paper contributes to next-generation pro-
cess management in three ways. Practically, it shows how LLMs
address industry pain points like manual process modeling bot-
tlenecks. Methodologically, it highlights hybrid architectures that
merge LLMs with traditional ML and participatory design. Theo-
retically, it challenges the view of LLMs as standalone solutions,
advocating instead for their role in human-in-the-loop workflows.

The remainder of this paper is structured as follows: Sections 2–5
detail the four use cases, emphasizing their technical architectures,
LLM integration strategies, and (initial) empirical findings. Sec-
tion 6 synthesizes challenges and opportunities, framing a research
agenda for AI-driven BPM in the LLM era. Finally, section 7 sum-
marizes and concludes the paper.

2 Use Case 1 - LLM-Mediated Interaction with
Trustworthy Process Predictions

2.1 Motivation
Modernmanufacturing systems generate vast volumes of event data
through MES, capturing granular details of production machine
states, operator actions, material flows, and quality checks [25]. PM
leverages these event logs to reconstruct and analyze production
processes, offering insights into bottlenecks, inefficiencies, and
deviations from planned schedules. While traditional PM excels at
descriptive analytics, its capacity for predictive and prescriptive
optimization remains limited, particularly in dynamic environments
requiring real-time adaptation to urgent orders, material variability,
or machine downtime [39].

ML has emerged as a promising tool to augment PM in pro-
duction scheduling and planning [25]. PPM models, trained on
historical event logs, can forecast production durations, optimize
resource allocation, and simulate alternative workflows. However,
their adoption introduces a critical challenge: the opacity of ML
decision-making undermines trust in high-stakes scenarios. Produc-
tion planners, tasked with validating schedules against contractual
deadlines and quality standards, face a dilemma. They must recon-
cile ML’s predictive accuracy with the need for intuitive, auditable
reasoning — a requirement unmet by "black-box" ML models that
obscure the rationale behind their outputs.

Current XAI methodologies fail to resolve these barriers [30].
Most approaches generate static explanations that do not align with
the dynamic priorities of domain experts [21]. This creates a critical
bottleneck: machine-generated explanations lack the flexibility to
accommodate human intuition, limiting users’ ability to interrogate,
refine, or contextualize model outputs. Consequently, even accu-
rate predictions risk rejection, perpetuating reliance on suboptimal
traditional methods like expert estimations. The consequences of
this gap are severe. Inaccurate or mistrusted predictions risk costly
delays, contractual penalties, and resource underutilization. For
example, overly conservative scheduling to hedge against opaque
ML recommendations may idle machines or operators, while overly
optimistic forecasts jeopardize on-time delivery.

2.2 Approach
The challenges outlined above, namely non-transparent ML-driven
decision-making, misalignment between static explanations and
human intuition, and the operational risks of mistrusted predic-
tions, underscore a pressing need for frameworks that harmonize
technical explainability with domain-specific interpretability. Tra-
ditional approaches treat explainability as a post-hoc justification
layer, divorced from the dynamic, context-rich realities of produc-
tion planning. To bridge this gap, we propose a process-driven
human-AI collaboration framework that reimagines explainability
as an iterative, process-aware dialogue. The conceptual framework,
consisting of three modules, is shown in Figure 1.

Central to this approach is the integration of PM, which grounds
ML predictions in the temporal and causal dependencies captured
by MES event logs. Module 1 collects and prepares event logs from
various manufacturing steps, such as pressing, bending, or grind-
ing. Supervised learning is applied to forecast processing duration
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Figure 1: Three-module AI solution that integrates human-centered ML, LLM–based interaction, and an intelligent AI interface

of production activities. Predictions are contextualized within his-
torical workflows, linking delays to prior bottlenecks or resource
shortages. XAI techniques - including Shapley-based approaches
[22], Individual Conditional Expectation [11], and Partial Depen-
dence Plots [8] - produce multiple layers of interpretability [28].
However, grounding alone is insufficient. To foster trust, the frame-
work embeds UQ at its core, transforming probabilistic ML outputs
into risk-aware decision boundaries. UQ methods (such as Monte
Carlo Dropout [9] or Split Conformal Prediction [41]) quantify the
reliability of these predictions. Planners no longer face a binary
choice between accepting or rejecting a prediction; instead, they
assess predictions or credible intervals (e.g., “Cutting time: 8.2h ±
1.1h”) alongside PM insights to make informed trade-offs [24, 26].

Since transparency without interactivity risks perpetuating the
status quo, our framework introduces Module 2: a multi-agent
LLM architecture that transforms static explanations into dynamic
conversations. By decomposing user queries into specialized tasks
— explanation generation, scenario testing, validation — the sys-
tem mirrors human problem-solving: probing assumptions, testing
hypotheses, and refining conclusions. This agentic design ensures
explanations adapt not just to the data, but to the planner’s evolving
priorities, whether optimizing for speed, cost, or resource fairness.
The LLM module is refined through prompt engineering [10], en-
suring domain-specific accuracy and mitigating bias to provide
context-aware recommendations. In addition to its prompt-driven
capabilities, the LLM layer employs a RAG [20] mechanism to store
and retrieve previously generated or curated XAI explanations:
Through vector-based indexing, the LLM ranks potentially relevant
explanations according to semantic similarity, quantifies their rele-
vance scores, and selectively incorporates them into its responses.
This approach not only promotes consistency and coherence in the

explanations but also ensures that domain experts receive the most
pertinent information for their context.

To translate these enriched conversations into actionable in-
sights, the framework adds Module 3. This layer presents an adap-
tive, context-aware user interface that integrates dashboards, con-
versational widgets, and visual analytics. It renders predictions,
uncertainty intervals, and process-mining traces in an intuitive
format, and guides planners through what-if analyses. By surfacing
the right information at the right granularity, the interface closes
the loop between analytical depth and operational usability.

Ultimately, the framework positions PM as the backbone of a
collaborative loop, where human expertise and AI predictions itera-
tively refine one another. Planners interrogate models through nat-
ural language, which in turn respond with process-contextualized
insights, and shared understanding emerges from this dialogue.
In doing so, the work moves beyond technical explainability to
operational trust — a prerequisite for transforming predictive ana-
lytics from a reactive tool into a proactive partner in high-stakes
manufacturing.

2.3 Experiences
Early experiments suggest that combining robust data pipelines
with iterative user interfaces significantly enhances trust among
domain experts [24–28]. Providing a dialogue-centric LLM interface
encourages users from various domains to probe model outputs,
interpret results more effectively, and adapt strategies on-the-fly.
Moreover, from a data protection and compliance perspective, the
LLM module supports the use of tools as well as systematic fil-
tering and revision of outputs to ensure adherence to regulatory
requirements.
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While the agentic LLM architecture addresses many domain-
specific queries with high accuracy, ensuringmodel reliability under
real-time production constraints remains a challenge. The complex-
ity of industrial processes can lead to irregularities in data quality,
requiring continual data curation and pipeline updates. Addition-
ally, harmonizing automated explanation outputs with diverse user
expectations demands a careful balance between technical detail
and domain-level interpretability. Finally, overcoming skepticism
about “black-box” AI systems calls for ongoing transparency mea-
sures, where the interplay of XAI and LLM-driven explanations
must be demonstrably fair, unbiased, and consistent with opera-
tional requirements.

3 Use Case 2 - Conversational BPMN Modeling
3.1 Motivation
Business process models are a highly valuable source of information
in business contexts [19]. They are necessary for the adequate de-
sign of information systems, requirements engineering, and for the
means of process communication. However, creating these models
requires significant manual effort and knowledge about modeling
notations such as BPMN. At the same time, process modeling in-
volves various stakeholders with different levels of expertise [6].
For example, a domain expert has knowledge about the underlying
business workflows; however, they might not be able to create or
understand a process model on their own [29]. Therefore, it would
be beneficial to enable process modeling through natural language
while eliminating the requirement of understanding the correspond-
ing modeling notation. Furthermore, being able to ask questions
about a certain process model could also improve understanding
for all stakeholders.

For many years, researchers have explored automated text-to-
model approaches, ranging from rule-based methods to more ad-
vanced systems using Natural Language Processing (NLP) tech-
niques. LLMs have emerged as a promising technology for this task,
given their strong reasoning capabilities over natural language and
ability to solve tasks not explicitly trained on. Thus, LLMs can
also support conversational process modeling, allowing for inter-
active, collaborative process modeling with users in a chat-based
environment [15].

A key challenge in this context is ensuring that LLMs can accu-
rately interpret and generate BPMNs. Also, one needs to decide how
the process models can be represented in a machine-readable for-
mat. We noticed that most open-source LLMs struggle to generate
valid BPMN models, even though it’s a frequently used modeling
notation [18]. This calls for specializing LLMs for this task, e.g., by
fine-tuning (preferably lightweight) LLMs. In particular, Supervised
Fine-Tuning on the text-to-BPMN task can enhance their ability to
generate valid and accurate BPMN models.

3.2 Approach
We implemented a prototypical chat environment that enables
users to interact with an LLM in order to generate BPMN models
of business processes. Users can prompt the LLM to generate a
BPMN, modify an existing BPMN, or ask clarifying questions. This
interactive system requires the LLM to understand different user
intents, such as initial modeling, refinement, and updates. To guide

Figure 2: Architecture for Conversational Process Modeling

the LLM, a system prompt first defines the general setting and task
at hand. It also defines the LLM’s target output — in our case, a JSON
object that can easily be parsed. It contains the textual response as
well as the actual BPMN model. Additionally, one-shot prompting
is used to provide an example output, which tends to improve
response quality. The LLM then processes user requests, generates
a new BPMN, updates an existing one, or answers questions about
a BPMN model as needed.

In our scenario, the exchange format for BPMNs between the ap-
plication and LLMwas defined as the official BPMN-XML standard1.
To optimize efficiency, the layout of BPMN elements (i.e., precise
coordinates) is handled algorithmically. This approach speeds up
inference by eliminating the need for the LLM to generate layout-
related tokens. At the same time, it prevents placement errors dur-
ing the layouting procedure resulting from incorrect LLM outputs.
Finally, a refinement loop was added to ensure BPMN validity, al-
lowing the system to correct any issues before finalizing the model
and presenting it to the user. The overall architecture and user
collaboration is shown in Figure 2.

In preliminary experiments, we tested various open-source LLMs
with sizes between 1B and 70B on publicly available text-model
pairs [18]. To ensure the validity of the generated BPMN-XML mod-
els, we used an XML validator2. We assess the quality of generated
BPMN models based on different evaluation metrics, covering dif-
ferent modeling aspects, such as syntactic correctness or semantic
expressiveness, compared to the ground truth models.

3.3 Experiences
At first, the quality of the LLM-generated BPMNs seems convinc-
ing. The LLMs are able to generate BPMN models that depict the
description, with bigger LLMs generating BPMNs with more details
compared to smaller ones. However, we observe various limitations
throughout our experiments (see [18] for more details).

Our findings reveal that LLMs struggle with BPMN-XML as
exchange format. The XML standard requires many characters to
represent a process model, such as specific XML tags that define the
XML schema. Therefore, the majority of generated tokens are spent
on generating content that does not address the process model itself,
but rather necessary structuring elements. Generating BPMN-XML
is also error-prone and results in many invalid models, even though

1https://www.bpmn.org/
2https://github.com/bpmn-io/bpmn-moddle/tree/main/resources/bpmn/xsd

https://www.bpmn.org/
https://github.com/bpmn-io/bpmn-moddle/tree/main/resources/bpmn/xsd
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a refinement loop was added. Particularly, smaller LLMs struggled
to produce valid and syntactically correct BPMNs. In contrast, larger
LLMs performed noticeably better, as expected.

Further, the BPMNs have semantic deficits. Often, the LLMs
struggle to identify all the relevant behaviors of a business process
and thus generate BPMNs that do not contain all paths. This means
that either a manual refinement or additional instructions on how to
update specific details of the BPMN are necessary. We also observed
that when prompted to alter an existing BPMN, LLMs often failed to
incorporate all necessary changes, especially in terms of updating,
removing, or adding the right sequence flows.

When asked to generate complex BPMNs, LLMs tend to produce
faulty code or hallucinate non-existent XML tags. Therefore, it is
advisable to introduce a more compact process model representa-
tion. In literature, different approaches are used, e.g., utilizing bullet
point lists [12] or partially ordered workflow language, which can
be converted to process models [16]. Further, Chain-of-Thought
should be used to increase the accuracy of the generated models
and to make the modeling intention of the LLM transparent to the
user, fostering trust in the LLM and understandability of the BPMN.

Additionally, inference times were quite long, making larger
LLMs less suitable for real-time, chat-based interactions. This high-
lights the need for lightweight LLMs for this use case to overcome
scalability issues. Fine-tuning via techniques such as LoRA [14]
can be an efficient way to enhance LLM performance in conversa-
tional processmodeling. However, creating high-quality fine-tuning
datasets can be challenging and time-consuming. So-called Pref-
erence Tuning can also be used to let the LLM obtain a deeper
understanding of process modeling. For example, one could provide
a textual process description and different corresponding process
models - in this scenario BPMNs - with different levels of quality
and let the LLM decide which process model fits best. Coming from
the other direction, one could provide a process model as well as
different textual descriptions that describe this process more or less
well, and let the LLM decide which description is the best fitting
one. In real-world settings, it’s possible to model a certain process
in different correct ways. It is precisely this aspect that could be
trained with such an approach, where the LLM learns nuances in
business process modeling. However, this also requires high-quality
preference datasets as well as additional fine-tuning stages (e.g.,
leveraging Direct Preference Optimization [32]).

4 Use Case 3 - Monitoring Drug Safety with KGs
and LLM-Agents

4.1 Motivation
The safety of medicines has to be monitored continuously through-
out their use. Pharmacovigilance (PV) describes the activities car-
ried out to ensure the safety of medicines in the market, i.e., the
detection, assessment, understanding, and prevention of adverse
effects with medicines. The PV lifecycle consists of the phases ”col-
lect, manage and analyze”, ”review and assess”, ”decide and act”,
”communicate”, and ”monitor” [7]. Information on medicines in the
market has to be collected and analyzed, reviewed, and assessed
by regulatory experts to decide whether and which actions are
required. These actions need to be communicated and their conse-
quences monitored.

Figure 3: Architecture of PV KG and LLM-Agents

These tasks require screening large amounts of textual reports
and their assessment with domain knowledge. For instance, they in-
volve querying and scanning relevant documents in public databases
such as PubMed (scientific reports) and MAUDE (reports from med-
ical experts and patients). Further, internal company case reports
or social media posts can also be of interest. Domain knowledge in
the form of publicly3 or internally available KGs is another relevant
source of information, such as drug-drug interactions or terminolo-
gies. This requires querying graph databases. In order to analyze
and decide about following actions in PV, experts need to interpret
information with vast domain knowledge, e.g., to assess whether a
reported issue is known or unknown, or even an adverse event.

LLMs’ abilities can assist regulatory experts with PV. LLMs with
tool access can retrieve, collect, and analyze reports from differ-
ent data sources. Graph-structured databases can also be queried
by LLMs [37], and the information linked with reports. This sup-
ports regulatory experts in the initial phases of the PV lifecycle.
Additionally, LLM agents can support other lifecycle phases, like
”communicate” and ”monitor” bywriting reports and using agents to
perform the data collection phase continuously. Thereby, they sup-
port experts by relieving them from repetitive and time-consuming
tasks such as information retrieval and initial analysis. However,
data is distributed across various databases and stored in different
formats such as text and graphs. Further, strict regulations apply
when integrating AI systems into highly regulated environments.
Therefore, a custom approach has been designed.

4.2 Approach
The main parts of the approach are outlined in Figure 3, consisting
of database extractors (top row), NLP preprocessing, the PV KG,
LLM agents, and a frontend to interact with users. Central is a
custom PV KG containing entities and relations relevant to PV.
Based on this, LLM agents, which are able to utilize the information
in the PV KG and other KGs, are used to answer user queries and
PV questions.

3e.g., https://bioportal.bioontology.org/

https://bioportal.bioontology.org/
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Database Extractor. Different database extractors retrieve rele-
vant reports and other information from diverse data sources, e.g.,
scientific publications from PubMed, reports from MAUDE, or so-
cial media posts. Using language models, these texts are annotated
and classified, and relevant entities are extracted, which allows
information to be stored in a KG. If data is readily available as a
graph, e.g., publicly available KGs, we link or integrate this data
directly into the PV KG (e.g., terminologies like SNOMEDCT or
RXNORM).

PV KG. A dedicated KG for PV is created, consisting of relevant
information in a structured format, such as drug-drug interactions,
adverse effects, populations, risks, and subsets of terminologies.
Further, it should link to the source document, e.g., the PubMed
report, social media post, or other KG, if detailed information is
required. As such, it serves as a unified knowledge base from which
to retrieve information.

LLM Agents. LLMs with tool access are used to retrieve infor-
mation from the PV KG for analytical tasks. For this, LLM-based
question answering over KG is employed [37], where the LLM
queries the KG given a question from the user and answers that
question based on the results from the KG query. By using struc-
tured knowledge in KG, resembling domain knowledge, the answers
from the LLM should adhere to factual knowledge instead of only
learned knowledge, reducing the risk of hallucinations [42]. LLM
agents will be used for more complex tasks that require multiple
steps, e.g., collecting data from databases that cannot be queried
or more complex queries that require analyzing multiple reports
and documents in depth. They are trained from recorded process
executions by users to perform the same task similarly. Individual
steps can be performed by LLMs with tool access. Thereby, they
support humans in information retrieval and analysis.

Frontend. The frontend is used for displaying results and inter-
acting with the databases and agents. It allows the user to manually
query the databases, in case they want to analyze the data by hand.
It also allows to trigger agentic workflows.

4.3 Experiences
Preliminary results indicate the overall approach’s feasibility. For
instance, it is feasible to retrieve, annotate, and extract entities of
interest from PubMed and MAUDE and store them in the PV KG
using language models. Small-sized LLMs are sufficient for most
tasks, while larger LLMs are beneficial for complex reports. Ad-
ditionally, LLMs are capable of formulating queries to the PV KG
given the respective KG scheme, as well as interpreting the output.
This should allow multi-step pipelines where the LLM decides to
query the KG and/or other documents to extract relevant infor-
mation. Next steps include validating the quality of the generated
answers as well as the performance and accuracy of the results of
the agentic workflows. Multi-step LLM agent workflows will be
conceptualized and trained using the recorded process executions
to validate the feasibility of instructing agents with click stream
data. We expect the agents to take over a substantial amount of
repetitive work with some applications on the analysis part, too.
Further, a framework for evaluating the compliance of the approach
has to be developed.

5 Use Case 4 - Multi-Agent Assistance System
for the Textile Design Process

5.1 Motivation
The textile industry is one of the most significant global economic
sectors and faces various challenges such as environmental con-
cerns, resource inefficiency, waste generation, and the growing
pressure to meet regulatory and sustainability standards [4, 33].
Increasing consumer demand for environmentally responsible prod-
ucts andmore stringent regulations have created a shift in the textile
industry towards sustainability and circular economy principles.
However, this transformation is complex, requiring innovative solu-
tions from the sourcing of rawmaterials to managing the end-of-life
of textiles [1, 33].

In response to these challenges, the EU has launched a strat-
egy for sustainable and circular textiles [3]. The strategy aims to
promote sustainable practices, reduce environmental impact, and
increase the efficiency of material usage throughout the textile sup-
ply chain. For instance, the Digital Product Passport (DPP) aims
to enhance transparency throughout a fashion product’s lifecycle.
However, operationalizing this strategy is challenging. It requires
industry-wide collaboration, significant technological advances,
and the development of reliable decision-making frameworks based
on data about materials, production processes, and supply chains.
As a result, there is a pressing need for more intelligent, data-driven
approaches to help manufacturers meet these challenges.

5.2 Approach
The goal is to implement a trustworthy AI system that processes
heterogeneous data such as DIN Standards, EU guidelines, or mate-
rial characteristics, to support textile designers during the design
process. The system shall facilitate adherence to regulatory require-
ments and actively allow for sustainable textile designs. It will assist
designers by providing actionable recommendations for sustainable
practices across multiple design criteria.

For instance, the longevity of textiles can be enhanced by using
durable fabrics. However, sometimes, a tradeoff has to be made
between durability and recyclability, since not all durable fabrics
can be recycled easily or infinitely. Similarly, tradeoffs between
social and economic factors have to be made when choosing sup-
pliers. The proposed system should support the designer in making
informed decisions that align with sustainability goals. By analyz-
ing the specific context of each design decision, the system will
also generate explanations to ensure transparency and reliability.
Further, DPPs should be created automatically by the system, thus
reducing the designers’ need for manual work.

The core of the solution will be a multi-agent LLM system to
facilitate the interaction between designers and sustainability crite-
ria. The first key component consists of specialized LLM-agents, as
shown in Figure 4, that each perform a specialized task. For exam-
ple, the regulation agent searches the knowledge base for relevant
data on regulations and laws in order to integrate them into the
design process. The material agent specializes in identifying ma-
terials and suppliers following the requirements requested by the
designer. The underlying knowledge base includes various internal
and external data sources. The user can upload company-owned
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Figure 4: Architecture of Multi-Agent Textile Design Assistance System

data, such as historic orders or internal sustainability criteria. This
shall allow the system to access relevant data at all times and en-
sure that the final results are tailored to the end-user. All agents are
controlled by a central orchestrator, which controls the information
flow between the agents to ensure an adequate execution.

Given the results of the specialized agents, the LLM-core is used
to generate corresponding outputs. To build confidence in the sys-
tem’s recommendations, a key component will be trustworthy AI.
The idea is to leverage XAI techniques such as counterfactual expla-
nations, or UQ approaches like Bayesian approaches or Conformal
Prediction. These methods are built on top of the LLMs and are
used to analyze their outputs, which would otherwise be opaque
from a human point of view. The final outputs and explanations
will then be forwarded to the designer. This approach will allow
for an easy integration of textual data and contextual inputs from
various sources. Designers will be able to interact with the system
to quickly generate ideas, validate choices, and access data-driven
insights.

5.3 Experiences
We started implementing this use case by developing a recom-
mender system for fabrics based on user preferences. Unfortunately,
there is very little data on fabric combinations and their longevity
publicly available, which is why expert interviews have been con-
ducted. Thereby, we noticed that several trade-offs have to be made,
which requires extensive explanation and communication with the
designer about the consequences of substituting fabrics, other im-
plications, e.g., social aspects, and alternatives. Soon, the impact
of suppliers and their certificates became evident, which adds an-
other dimension to the decision problem. Using LLMs as well as
Trustworthy AI techniques should allow the unaware end-user to
understand this multi-criteria decision problem and balance the
effects on each dimension. For example, the system could identify

that selecting a specific supplier for a specific material could reduce
the production cost by a considerable amount while still adhering
to the same sustainability criteria as before. There is an ongoing
challenge on how to adequately integrate corresponding knowledge
into the LLM system and how to make those trade-offs explainable
to the end-user by means of XAI and related methods.

6 Discussion
6.1 Overview
Table 1 summarizes and compares the four use cases in terms of in-
put modality, BPM lifecycle phases, industry impact, LLM Role, XAI
perspectives, challenges, and future directions. As demonstrated
throughout the paper, LLMs can assist various BPM use cases in
different industries - from production to consulting and life-science
to sustainable textiles. All BPM lifecycle phases can be supported
with LLM techniques, impacting different business goals such as
efficiency, compliance, and sustainability. To enforce trust in AI-
driven BPM solutions, various trust mechanisms such as Shapley
values, Chain-of-Thought, or KG grounding can be used. In all use
cases, human interaction is enforced, and no decisions are made
without human supervision.

6.2 Challenges
Each use case has its own challenges. In the first use case, generating
real-time UQ and XAI outcomes in industrial PPM is a key challenge.
Explanations have to balance technical details and domain-level
interpretability to be trusted by the users.

In collaborative BPMN modeling, fine-tuning small LLMs to gen-
erate high-quality BPMN models in near real-time is of particular
interest. The lack of high-quality datasets for this task makes train-
ing LLMs particularly challenging. Therefore, alternative training
strategies have to be developed to enhance the modeling compe-
tencies of open-source LLMs.
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Table 1: Comparative Analysis of LLM-Driven BPM Use Cases

Use Case LLM-based Interaction
with Predictions

Conversational BPMN
Modeling

Pharmacovigilance
with AI Agents

Sustainable Textile De-
sign Process

Input Modality Event logs Text Text, KG Text, Tabular, Images
BPM Lifecycle Phases Implementation, Execu-

tion, Monitoring
Discovery, Redesign Implementation, Moni-

toring
Execution

Industry Impact Transparent, process-
driven production
planning

Democratized process de-
sign (cross-industry)

Supporting regulatory ex-
perts in medicine safety

Sustainable textile design

LLM Role Multi-agent dialogues
with Trustworthy AI-
based PPM

Conversational BPMN
translation

KG-QA agents for phar-
macovigilance

Multi-agent orches-
tration for trade-off
resolution

Trust Mechanism UQ, XAI, RAG SFT, Chain-of-Thought KG grounding XAI, Algorithmic Fair-
ness, RAG

Ethical Risks Accountability in high-
stakes decisions

Over-reliance on auto-
mated modeling

Hallucinations in medical
compliance

Bias in sustainability
trade-offs

Human-AI Interaction Multi-agent dia-
logues with process-
contextualized feedback

Natural language dia-
logue

Agentic workflows with
human oversight

Committee-based multi-
agent negotiation

Key Challenges Scalability Improving BPMN quality LLM-KG integration Quantifying multidimen-
sional trade-offs

Data Challenge Event log complexity Efficient BPMN notation
modeling

Multisource integration
(text + KG)

Multimodal integration
(materials, regulations)

Future Directions Bilateral integration of
UQ and XAI; Object-
centric PM

Lightweight LLMs for
real-time BPMN model-
ing

Hybrid KG-LLM architec-
tures

Multi-objective optimiza-
tion frameworks

To support regulatory experts in PV, challenges remain in com-
bining LLMs with KGs. Especially when multiple KGs are available
or multiple steps are required to reach conclusions. Instructing
agents to perform business processes following human demonstra-
tions will be another challenge to face.

For sustainable recommendations in textile designs, trade-offs
in multiple dimensions and domains, which are difficult to quan-
tify, have to be made. Whether LLMs can balance these trade-offs
remains to be seen.

Spanning across all use cases, we see thatmore research is needed
for process-aware LLMs. While LLMs can generate text that is
difficult to distinguish from expert writing, LLM-generated BPMN
models are often not valid XML files and contain syntactical errors.
Further, agentic workflows need instructions, showing that such
systems are not process-aware by design. However, we see the
potential to transfer knowledge between the use cases to enhance
the processual thinking of LLMs.

Challenges also remain when it comes to ethical risks. Over-
reliance on predictions or generated BPMN models, which can
potentially be faulty, as well as biases in LLMs, poses the risk of
leading to bad consequences. For regulatory use cases, hallucina-
tions have to be controlled, and the LLMs have to be enforced to
only use factual knowledge available in KGs.

7 Conclusion
This paper introduced four LLM-based use cases, demonstrating
that all phases of the BPM lifecycle can be supported. These cases
span different industries, such as manufacturing, consulting, life-
science, and sustainable textiles. They support companies by in-
creasing efficiency, enhancing business processes, ensuring com-
pliance, and adhering to diverse regulations. Various ways on how
to apply LLMs in productive settings have been shown - from ex-
plaining process predictions, generating BPMN models, querying
knowledge graphs to balancing trade-offs. In all cases, it emerged
that human-machine interactions are essential for successful pro-
cess executions. In addition, AI methods - and LLM applications in
particular - should be supplemented by XAI techniques in order to
make their predictions auditable for decision-making in real-world
scenarios. Key challenges across the use cases remain in improving
LLMs’ capabilities to think in processes rather than support single
tasks. Further, trustworthiness should be enforced by design, and
ethical constraints should be considered from early on.
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